if x= √3+1÷2,find the value of 4x³+2x²-8x+7.
Answers
Answer:
Step-by-step explanation:
x=(√3+1)/2
=>4[(√3+1)/2]³ + 2[√3+1)/2]² - 8[(√3+1)/2]+7
=>4*(√3+1)³/8 + 2*(√3+1)/4 - 4(√3+1) + 7
=>(√3+1)³/2 +(√3+1)²/2 -4√3 - 4 +7
=>{[3√3+1+3(3)(1)+3(1)(√3)]+[3+1+2√3]}/2 -4√3 + 3
=>[6√3+10+4+2√3-8√3+6]/2
=>[8√3+20-8√3]/2 = 20/2
=.>10
answer is 10
i hope it is helpful
Answer:
Given x = (√3 +1)/2
4((√3 +1)/2)^3 + 2((√3 +1)/2)^2 − 8((√3 +1)/2) + 7
Now, 4(√3 +1)^3/8 + 2(√3 +1)^2/4 − 8(√3 +1)/2 + 7
=> (√3 +1)^3/2 + (√3 +1)^2/2 − 4(√3 +1) + 7
We know that,(a + b)^n = ∑[k=0,n] C(n,k) * a^(n−k) * b^k
Hence (a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3
and (a + b)^2 = 1a^2 + 2ab + 1b^2
=> (3√3 + 9 + 3√3 +1)/2 + (3 + 2√3 +1)/2 − 4(√3 +1) + 7
=> (6√3 + 10)/2 + (2√3 +4)/2 − 4(√3 +1) + 7
=> 3√3 + 5 + √3 + 2 − 4√3 − 4 + 7 = 10
Read more on Brainly.in - https://brainly.in/question/1241918#readmore
Step-by-step explanation: