Math, asked by rushitbanjarapremier, 2 months ago


If x=√3+1 / 2
find the value of 4xcube + 2x square – 8x + 7.

Answers

Answered by StormEyes
5

Solution!!

\sf x=\dfrac{\sqrt{3}+1}{2}

\sf 4x^{3}+2x^{2}-8x+7

Substitute the value of x.

\sf =4\left(\dfrac{\sqrt{3}+1}{2}\right)^{3}+2\left(\dfrac{\sqrt{3}+1}{2}\right)-8\left(\dfrac{\sqrt{3}+1}{2}\right)+7

Reduce the numbers with the greatest common factor 2.

\sf =4\left(\dfrac{\sqrt{3}+1}{2}\right)^{3}+2\left(\dfrac{\sqrt{3}+1}{2}\right)-4(\sqrt{3}+1)+7

To raise a fraction to a power, raise the numerator and denominator to that power.

\sf =4\left(\dfrac{(\sqrt{3}+1)^{3}}{8}+2\left(\dfrac{\sqrt{3}+1}{2}\right)-4(\sqrt{3}+1)+7

To raise a fraction to a power, raise the numerator and denominator to that power.

\sf =4\left(\dfrac{(\sqrt{3}+1)^{3}}{8}+2\left(\dfrac{(\sqrt{3}+1)^{2}}{4}-4(\sqrt{3}+1)+7

Reduce the numbers with the greatest common factor 4 and 2.

\sf =\dfrac{(\sqrt{3}+1)^{3}}{2}+\dfrac{(\sqrt{3}+1)^{2}}{2}-4(\sqrt{3}+1)+7

Distribute -4 through the parentheses.

\sf =\dfrac{(\sqrt{3}+1)^{3}}{2}+\dfrac{(\sqrt{3}+1)^{2}}{2}-4\sqrt{3}-4+7

Use (a + b)³ = a³ + 3a²b + 3ab² + b³ to expand the expression.

\sf =\dfrac{\sqrt{3}+9+\sqrt{3}+1}{2}+\dfrac{(\sqrt{3}+1)^{2}}{2}-4\sqrt{3}-4+7

Use (a + b)² = a² + 2ab + b² to expand the expression.

\sf =\dfrac{3\sqrt{3}+9+3\sqrt{3}+1}{2}+\dfrac{3+2\sqrt{3}+1}{2}-4\sqrt{3}-4+7

Collect the like terms and add and subtract the numbers.

\sf =\dfrac{6\sqrt{3}+10}{2}+\dfrac{4+2\sqrt{3}}{2}-4\sqrt{3}+3

Factor out 2 from the expressions.

\sf =\dfrac{2(3\sqrt{3}+5)}{2}+\dfrac{2(2+\sqrt{3})}{2}-4\sqrt{3}+3

Reduce the fractions with 2.

\sf =3\sqrt{3}+5+2+\sqrt{3}-4\sqrt{3}+3

Collect the like terms.

\sf =3\sqrt{3}+\sqrt{3}-4\sqrt{3}+5+2+3

Add and subtract the terms.

\sf =10

Similar questions