Math, asked by arnavnagpal16, 11 months ago

If x = 3 + 2 √2 find the value of √x + 1 / √x

Answers

Answered by BrainlyQueen01
10

Answer:

\boxed{\bf \sqrt{x} + \dfrac{1}{\sqrt{x}} = 2\sqrt{2}}

Step-by-step explanation:

Given :

  • x = 3 + 2√2

Step 1 : Find the value of √x.

⇒ x = 3 + 2√2

⇒ x = 2 + 1 + 2√2

⇒ x = (√2)² + (1)² + 2. 1. √2

⇒ x = ( √2 + 1)²

⇒ √x = √2 + 1

Step 2 : Find the value of 1/√x.

⇒ √x = √2 + 1

\tt \dfrac{1}{\sqrt{x}} = \dfrac{1}{\sqrt{2}+1}

\tt \dfrac{1}{\sqrt{x}} = \dfrac{1}{\sqrt{2}+1} \times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}

\tt \dfrac{1}{\sqrt{x}} = \dfrac{\sqrt{2}-1}{(\sqrt{2})^2 - (1)^2}

\tt \dfrac{1}{\sqrt{x}} = \dfrac{\sqrt{2}-1}{2 - 1}

\tt \dfrac{1}{\sqrt{x}} = \sqrt{2} - 1

Step 3 : Find the value of √x + 1 /√x.

\tt \sqrt{x} + \dfrac{1}{\sqrt{x}} = \sqrt{2} + 1 + \sqrt{2} - 1

\tt \sqrt{x} + \dfrac{1}{\sqrt{x}} = \sqrt{2} +\sqrt{2}

\tt \sqrt{x} + \dfrac{1}{\sqrt{x}} = 2\sqrt{2}

Hence, the answer is 2√2.

Answered by Anonymous
9

 \huge \mathfrak \red{answer}

 \rm \blue{ \: answer \: is \: 2}

Question:

If x = 3 + 2 √2 find the value of √x + 1 / √x

✥step to step explanation✥

  \sf{x = 3 + 2 \sqrt{2}}

 \sf{1 + 2 \sqrt{2} + 2}

 \sf {1}^{2} + 2.1. \sqrt{2} +  \sqrt{2 {}^{2} )}

 \sf{(1 +  \sqrt{2 }^{2}) }

 \sf{ \sqrt{x} = 1 +  \sqrt{2}}

________________________________

then

 \tt{ \sqrt{x}  -  \frac{1}{ \sqrt{x} }}

 \tt{ = 1 +  \sqrt{2} -  \frac{1}{1 +  \sqrt{2} }}

 \tt{ =  \frac{  (1 +  \sqrt{2}  {}^{2})  - 1 }{1 +  \sqrt{2} } }

 \tt{  \frac{ = 1 + 2 \sqrt{2}  + 2 - 1 }{1 +  \sqrt{2} }}

 \tt{ =  \frac{2(1 +  \sqrt{2)} }{(1 +  \sqrt{2} )}}

 \tt \red{ = 2}

Answer is 2

Similar questions