Physics, asked by Sbchobi6091, 11 months ago

Q4. A vehicle is accelerating on a straight road. Its velocity at any instant is 30 kmhr-1, after 2s, it is 33.6 kmhr-1 and after further 2s, it is 37.2 kmhr -1. Find the acceleration in ms-2. Is the acceleration uniform?

Answers

Answered by BrainlyConqueror0901
33

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=0.5\:m/s^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Initial \: velocity(u) = 30 \: km/h \\  \\ \tt:  \implies Final \: velocity( v_{1} ) = 33.6 \: km/h \\  \\ \tt:  \implies Final\: velocity( v_{2} ) = 37.2 \: km/h \\  \\  \tt:  \implies Time( t_{1}) = 2 \: sec \\  \\ \tt:  \implies Time( t_{2}) = 2 \: sec \\  \\   \red{\underline \bold{To \: Find:}}\\ \tt:  \implies Acceleration(a) = ?

• According to given question :

 \tt \circ \: Initial \: velocity =30 \times  \frac{5}{18} =   \frac{150}{18} \: m/s \\  \\  \tt \circ \: Final \: velocity = 33.6 \times  \frac{5}{18}  =  \frac{168}{18}   \: m/s  \\  \\  \tt \circ \: Time = 2 \: sec \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\  \tt:  \implies  \frac{168}{18}  =  \frac{150}{18}  + a \times 2 \\  \\ \tt:  \implies  \frac{168 - 150}{18}  = 2 \times a \\  \\ \tt:  \implies a =  \frac{18}{18\times 2} \\  \\  \green{\tt:  \implies a = 0.5 \: m/{s}^{2} } \\  \\   \huge\bold{Again,} \\  \\  \tt \circ \:Initial \: velocity =  \frac{168}{18}  \: m/s \\  \\ \tt \circ \:Final \: velocity =  37.2 \times  \frac{5}{18}   =   \frac{186}{18}  \: m/s \\  \\  \tt \circ \: time = 2 \: sec \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\ \tt:  \implies  \frac{186}{18}   =  \frac{168}{18}  + a \times 2 \\  \\ \tt:  \implies   \frac{186 - 168}{18}   = 2 \times a \\  \\ \tt:  \implies  \frac{18}{18\times 2}  = a \\  \\  \green{\tt:  \implies a = 0.5 \: m/{s}^{2} } \\  \\   \green{\tt \therefore Acceleration \: is \: uniform \: in \: interval}

Answered by Anonymous
55

\Large{\underline{\underline{\bf{Solution :}}}}

↪ Case : 1

\Large{\underline{\underline{\bf{Given :}}}}

Initial velocity of car (u) = 30 km/h = \sf{30 \times \frac{5}{18} = \frac{150}{18} \: \: ms^{-1}}

Final velocity(\sf{v_1}) = 33.6 km/h = \sf{33.6 \times \frac{5}{18} = \frac{168}{18} \: \: ms^{-1}}

Time taken (t) = 2 seconds

\rule{200}{1}

\Large{\underline{\underline{\bf{Explanation :}}}}

As, We have to find the acceleration.

We know that,

\Large{\implies{\boxed{\boxed{\sf{a = \frac{v_1 - u}{t}}}}}}

Put Values

\sf{\rightarrow a = \dfrac{\dfrac{168}{18} - \frac{150}{18}}{2}} \\ \\ \sf{\rightarrow a = \dfrac{ \dfrac{168 - 150}{18}}{2}} \\ \\ \sf{\rightarrow a = \dfrac{ \dfrac{\cancel{18}}{\cancel{18}}}{2}} \\ \\ \sf{\rightarrow a = \frac{1}{2}} \\ \\ \sf{\rightarrow a = 0.5 \: ms^{-2}}\\ \\ \Large{\implies{\boxed{\boxed{\sf{a = 0.5 \: ms^{-2}}}}}}

\rule{200}{2}

↪ Case : 2

\Large{\underline{\underline{\bf{Given :}}}}

Initial velocity (u) = \frac{168}{18} m/s

Final velocity (\sf{v_2}) = 37.2 km/h = \sf{37.2 \times \frac{5}{18} = \frac{186}{18} \: \: ms^{-1}}

Time taken (t) = 2 seconds

\rule{200}{1}

\Large{\underline{\underline{\bf{Explanation :}}}}

As, We have to find the acceleration.

We know that,

\Large{\implies{\boxed{\boxed{\sf{a = \frac{v_1 - u}{t}}}}}}

★ Put Values

\sf{\rightarrow a = \dfrac{\dfrac{186}{18} - \frac{168}{18}}{2}} \\ \\ \sf{\rightarrow a = \dfrac{ \dfrac{186 - 168}{18}}{2}} \\ \\ \sf{\rightarrow a = \dfrac{ \dfrac{\cancel{18}}{\cancel{18}}}{2}} \\ \\ \sf{\rightarrow a = \frac{1}{2}} \\ \\ \sf{\rightarrow a = 0.5 \: ms^{-2}} \\ \\ \Large{\implies{\boxed{\boxed{\sf{a = 0.5 \: ms^{-2}}}}}}

Similar questions