Math, asked by jaibeerrawat34, 19 days ago

if x=3+2√2, find the value of √x-1/√x

Attachments:

Answers

Answered by upikachu67
0

Answer:

6 is the answer

please mark me as brainliest

Answered by suhail2070
0

Answer:

\sqrt{x}  -\frac{1}{ \sqrt{x} }  = 2 .

Step-by-step explanation:

x = 3 + 2 \sqrt{2}  \\  \\  \sqrt{x}  =  \sqrt{3 + 2 \sqrt{2} }  \\  \\  =  \sqrt{ {( \sqrt{2} )}^{2} +  {1}^{2} + 2 \sqrt{2}   (1) }  \\  \\  =  \sqrt{ {( \sqrt{2}  + 1)}^{2} }  \\  \\  =  \sqrt{2}  + 1. \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{2}  + 1}  = \frac{1}{ \sqrt{2}  + 1} \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}  \\  \\  =  \sqrt{2}  - 1 \\  \\ therefore \:  \:  \:  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  =  \sqrt{2}  + 1 -  \sqrt{2}  + 1 \\  \\  = 2 .

Similar questions