Math, asked by bhandarisandeep365, 9 months ago

if x=3-2√2, find the value of x^3-1/x^3

Answers

Answered by ERB
0

Answer:

-140√2

Step-by-step explanation:

x=3-2√2

so,

\frac{1}{x}=\frac{1}{3-2\sqrt2} = \frac{3+2\sqrt2}{(3-2\sqrt2)(3+2\sqrt2)}=\frac{3+2\sqrt2}{3^2-(2\sqrt2)^2}=\frac{3+2\sqrt2}{9-8}=\frac{3+2\sqrt2}{1}=3+2\sqrt2

Now,x-\frac{1}{x} = -4\sqrt2

x^3-\frac{1}{x^3} =(x-\frac{1}{x})^3+3x\frac{1}{x}(x-\frac{1}{x}) =(x-\frac{1}{x})^3+3(x-\frac{1}{x})

=(-4√2)³+3(-4√2)

= -128√2 -12√2

= -140√2

Similar questions