Math, asked by harshitashekhawat212, 30 days ago

If x=3 + 2√2 find the value of x²+ 1 /x² ans me fast ​

Answers

Answered by BrainlyYuVa
7

Solution

Given :-

  • x = 3 + 2√2 __________(1)

Find :-

  • Value of x² + 1/x².

Explantion

First Calculate, 1/x.

==> 1/x = 1/(3 + 2√2)

Rationalize Denominator of R.H.S.

==> 1/x = (3 - 2√2)/(3 + 2√2)(3 - 2√2)

Using Formula

\boxed{\underline{\tt{\red{\:(a+b)(a-b)\:=\:(a^2-b^2)}}}}

==> 1/x = (3 - 2√2)/[3² - (2√2)²]

==> 1/x = ( 3 - 2√2)/(9 - 8)

==> 1/x = (3 - 2√2)/1

==> 1/x = (3 - 2√2).

Now, Calculate ( + 1/)

Keep value of x & 1/x.

==> x² + 1/x² = (3 + 2√2)² + ( 3 - 2√2)²

==> x² + 1/x² = [3² + (2√2)² + 2×3×2√2] + [ 3² + (2√2)² - 2×3×2√2]

==> x² + 1/x² = [ 9 + 8 + 12√2] + [ 9 + 8 - 12√2]

==> x² + 1/x² = [ 17 + 12√2 + 17 - 12√2

==> x² + 1/x² = 34

Hence

  • Value of ( x² + 1/x²) will be = 34.

_____________________

Answered by Cottonking86
25

\huge\boxed{\fcolorbox{white}{cyan}{Answer:⇢}}

⠀⠀⠀

\bf  \underline{Solution} :-

⠀⠀⠀

\bf  \underline{Given} :-

  • x = 3 + 2√2 __________(1)

⠀⠀⠀

\bf  \underline{To  \: Find} :-

  • Value of x² + 1/x².

⠀⠀⠀

\bf  \underline{Explanation} :-

⠀⠀⠀

First Calculate,

  • 1/x.

  • ➜ 1/x = 1/(3 + 2√2)

Rationalize Denominator of ⠀⠀R.H.S.

  • ➜ 1/x = (3 - 2√2)/(3 + 2√2)(3 - 2√2)

⠀⠀⠀

\bf  \underline{Using   \: Formula} :-

\boxed{\underline{\tt{\red{\:(a+b)(a-b)\:=\:(a^2-b^2)}}}}

  • ➜ 1/x = (3 - 2√2)/[3² - (2√2)²]

  • ➜ 1/x = ( 3 - 2√2)/(9 - 8)

  • ➜ 1/x = (3 - 2√2)/1

  • ➜ 1/x = (3 - 2√2).

⠀⠀⠀

Now, Calculate ( x² + 1/x²)

Keep value of x & 1/x.

  • ➜ x² + 1/x² = (3 + 2√2)² + ( 3 - 2√2)²

  • ➜ x² + 1/x² = [3² + (2√2)² + 2×3×2√2] + [ 3² + (2√2)² - 2×3×2√2]

  • ➜ x² + 1/x² = [ 9 + 8 + 12√2] + [ 9 + 8 - 12√2]

  • ➜ x² + 1/x² = [ 17 + 12√2 + 17 - 12√2

  • ➜ x² + 1/x² = 34

⠀⠀⠀

\bf  \underline{Hence}..,

  • Value of ( x² + 1/x²) will be = 34

____________________________

Similar questions