If x=3 + 2√2 find the value of x²+ 1 /x² ans me fast
Answers
Answered by
7
Solution
Given :-
- x = 3 + 2√2 __________(1)
Find :-
- Value of x² + 1/x².
Explantion
First Calculate, 1/x.
==> 1/x = 1/(3 + 2√2)
Rationalize Denominator of R.H.S.
==> 1/x = (3 - 2√2)/(3 + 2√2)(3 - 2√2)
Using Formula
==> 1/x = (3 - 2√2)/[3² - (2√2)²]
==> 1/x = ( 3 - 2√2)/(9 - 8)
==> 1/x = (3 - 2√2)/1
==> 1/x = (3 - 2√2).
Now, Calculate ( x² + 1/x²)
Keep value of x & 1/x.
==> x² + 1/x² = (3 + 2√2)² + ( 3 - 2√2)²
==> x² + 1/x² = [3² + (2√2)² + 2×3×2√2] + [ 3² + (2√2)² - 2×3×2√2]
==> x² + 1/x² = [ 9 + 8 + 12√2] + [ 9 + 8 - 12√2]
==> x² + 1/x² = [ 17 + 12√2 + 17 - 12√2
==> x² + 1/x² = 34
Hence
- Value of ( x² + 1/x²) will be = 34.
_____________________
Answered by
25
⠀⠀⠀
⠀⠀⠀
- x = 3 + 2√2 __________(1)
⠀⠀⠀
- Value of x² + 1/x².
⠀⠀⠀
⠀⠀⠀
First Calculate,
- 1/x.
- ➜ 1/x = 1/(3 + 2√2)
∴ Rationalize Denominator of ⠀⠀R.H.S.
- ➜ 1/x = (3 - 2√2)/(3 + 2√2)(3 - 2√2)
⠀⠀⠀
∴
- ➜ 1/x = (3 - 2√2)/[3² - (2√2)²]
- ➜ 1/x = ( 3 - 2√2)/(9 - 8)
- ➜ 1/x = (3 - 2√2)/1
- ➜ 1/x = (3 - 2√2).
⠀⠀⠀
∴ Now, Calculate ( x² + 1/x²)
∴ Keep value of x & 1/x.
- ➜ x² + 1/x² = (3 + 2√2)² + ( 3 - 2√2)²
- ➜ x² + 1/x² = [3² + (2√2)² + 2×3×2√2] + [ 3² + (2√2)² - 2×3×2√2]
- ➜ x² + 1/x² = [ 9 + 8 + 12√2] + [ 9 + 8 - 12√2]
- ➜ x² + 1/x² = [ 17 + 12√2 + 17 - 12√2
- ➜ x² + 1/x² = 34
⠀⠀⠀
- Value of ( x² + 1/x²) will be = 34
____________________________
Similar questions