Math, asked by aparnanagpal, 11 months ago

if x = 3+2√2 find √x +1/√x​

Answers

Answered by roshankr1000
1

Answer:

2√2

Step-by-step explanation:

Given x = 3 + 2√2

⇒ x = 2 + 1 + 2√2 × 1

⇒ x = (√2)2 + 12 + 2 × √2 × 1

⇒ x = (√2 + 1)2

∴ √x = (√2 + 1)

⇒ 1/√x = 1/(√2 + 1)

Multiply and divide with (√2 – 1)  

1/√x = (√2 – 1)/[(√2 – 1)(√2 + 1)]  

        = (√2 – 1)/(2 – 1)

∴  1/√x = (√2 – 1)

Now consider, (√x + 1/√x) = (√2 + 1) + (√2 – 1)

Therefore, (√x + 1/√x) = 2√2

Hope so it will help :))

Answered by Anonymous
7

Answer :-

x + 1/√x

Explanation : -

Given :

x = 3 + 2 \sqrt{3}

To find :

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }

Solution :

x = 3 + 2 \sqrt{3}  \\  \\ above \: equation \: can \: be \: written \: as \\  \\ x = {( \sqrt{2}) }^{2}  + 2( \sqrt{2} ) +  {1}^{2}

We know that,

\boxed{\sf{ {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}}}

here \: a =  \sqrt{2}  \: and \: b = 1 \\  \\ so \: x =  {( \sqrt{2}  + 1) }^{2}

now \: substitute \: x \: \: in \:  \sqrt{x}   +  \frac{1}{ \sqrt{x} }

  \sqrt{x}  +  \frac{1}{ \sqrt{x} }=\sqrt{ {( \sqrt{2}  + 1)}^{2} }  +  \frac{1}{ \sqrt{ {( \sqrt{2} + 1)}^{2} } }

 =  \sqrt{2}  + 1 + \frac{1}{ \sqrt{2} + 1 }

 =  \frac{ (\sqrt{2} + 1)( \sqrt{2} + 1) }{ \sqrt{2}  + 1}  +  \frac{1}{ \sqrt{2} + 1 }

 =  \frac{{( \sqrt{2} + 1)}^{2}   + 1}{ \sqrt{2} + 1}

\boxed{\tt{ {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}}}

here \: a = \sqrt{2}  \: and \: b = 1 \\  \\ so \: substitute \: the \: values \: in \: the \\ above \: formula

 =  \frac{ {( \sqrt{2})}^{2} + 2( \sqrt{2})(1) + {1}^{2} + 1}{ \sqrt{2} + 1}

 =  \frac{ {( \sqrt{2})}^{2} + 2( \sqrt{2})(1) + 1 + 1}{ \sqrt{2} + 1}

 =  \frac{2 + 2 \sqrt{2} + 2 }{ \sqrt{2} + 1 }

 =  \frac{4 + 2 \sqrt{2} }{ \sqrt{2} + 1 }

 =  \frac{2(2 +  \sqrt{2}) }{ \sqrt{2} + 1}

 =   \frac{ 2(\sqrt{2}( \sqrt{2}  + 1) )}{ \sqrt{2} + 1 }

 =  \frac{2 \sqrt{2}( \sqrt{2}  + 1) }{ \sqrt{2} + 1 }

 = 2 \sqrt{2}

\boxed{\sf{\bold{\sqrt{x}  +  \frac{1}{ \sqrt{x} }=2 \sqrt{2} }}}

Identities used :-

(a + b)² = a² + 2ab + b²

Extra info :-

What is an identity ?

An equation is called an identity if it is satisfied by any value that replaces its variables.

Some Important identities :-

1] (a + b)² = a² + 2ab + b²

2](a - b)² = a² - 2ab + b²

3] (a + b)(a - b) = a² - b²

4] (x + a)(x + b) = x² + (a + b)x + ab


tavilefty666: superb answer
LovelyG: Great Job!
Anonymous: :-)
Similar questions