Math, asked by bhavyam1726, 10 months ago

If x = 3 - 2√2 , find x +1/x

Answers

Answered by MяƖиνιѕιвʟє
65

Given

If x = 3 - 2√2 , find x +1/x

To find

Find the value of x + 1/x

Solution

  • x = 3 - 2√2

Then,

➡ 1/x = 1/3 - 2√2

Rationalize it

➡ 1/x = 1/3 - 2√2 × 3 + 2√2/3 + 2√2

➡ 1/x = 3 + 2√2/(3)² - (2√2)²

➡ 1/x = 3 + 2√2/9 - 8

➡ 1/x = 3 + 2√2

Now, the value of x + 1/x

  • 1/x = 3 + 2√2

➡ x + 1/x

➡ 3 - 2√2 + 3 + 2√2

➡ 3 + 3

➡ 6

Answered by Cynefin
14

✰Answer✰

Given:

  •  \large{ \sf{x = 3 - 2 \sqrt{2} }}

To find:

  •  \large{ \sf{x +  \frac{1}{x} }}

Solution

 \large{ \sf{ \rightarrow x = 3 -  2\sqrt{2} } } \\  \\  \large{ \sf{ \rightarrow \:  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} } }}

By rationalising the denominator,

 \large{ \sf{ \green{ \rightarrow \: rationalising \: factor \: of \: 3 - 2 \sqrt{2} = 3 + 2 \sqrt{2}  }}} \\  \\  \large{ \sf{ \rightarrow \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{(3 - 2 \sqrt{2})(3 + 2 \sqrt{2} ) } }} \\  \\  \large{ \sf{ \rightarrow \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{( {3}^{2} -  {(2 \sqrt{2}) }^{2} )} }} \\  \\  \large{ \sf{ \rightarrow \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8} }} \\  \\  \large{ \sf{ \rightarrow \:  \frac{1}{x}  = 3 + 2 \sqrt{2} }}

Now adding x + 1/x to get required result,

 \large{ \sf{ \rightarrow \: x +  \frac{1}{x}  = 3  -  \cancel{2 \sqrt{2}  }+ 3 +  \cancel{2 \sqrt{2}} }} \\  \\  \large{ \sf{ \rightarrow \:  \boxed{ \purple{x +  \frac{1}{x}  = 6}}}}

So Final Answer

 \large{ \boxed{ \bf{ = 6}}}

Similar questions