Math, asked by AshwaniPratap, 10 months ago

3 2 6
2. Solve 2 - 3 = 1 and 2x - 4y = - 24 and hence find the value of 'm' for which
= mx-3​

Answers

Answered by amitkumar44481
4

Correct Question :

Solve 2x -3y = 1 and 2x -4y = -24 and hence Find the value of m for which 0 = mx -3.

Solution :

We have equation,

 \tt  \dagger \:  \:  \:  \:  \: 2x - 3y = 1. \:  \:  \:  \:  \:  - (1)

 \tt \dagger \:  \:  \:  \:  \: 2x - 4y =  - 24. \:  \:  \:  \:  \:  - (2)

Let try to solve my Substitution method Apply

Taking equation ( 2 )

 \tt\longmapsto 2x - 4y =  - 24

 \tt\longmapsto x - 2y =  - 12.

 \tt \longmapsto x = 2y - 12. \:  \:  \:  \:  \:  - (3)

Putting the value of x in Equation ( 1 ) We get,

 \tt\longmapsto 2x - 3y = 1.

 \tt\longmapsto 2(2y - 12) - 3y = 1.

 \tt \longmapsto 4y - 24 - 3y = 1.

 \tt \longmapsto y = 25.

Now, Putting the value of y in Equation ( 3 )

 \tt \longmapsto x  = 2y - 12.

 \tt\longmapsto x = 2(25) - 12

 \tt \longmapsto x = 50 - 12.

 \tt\longmapsto x = 38.

\rule{90}1

A/Q,

 \tt\dagger \:  \:  \:  \:  \:   0= mx - 3

 \tt \longmapsto 0 = m(38) - 3.

 \tt \longmapsto 38m = 3.

 \tt \longmapsto m =  \frac{3}{38}

Therefore, the value of m be 3/ 38

\rule{200}3

Verification :

Taking Equation 1.

 \tt\longmapsto 2x - 3y = 1.

Where as,

  • X = 38.
  • Y = 25.

 \tt\longmapsto 2( 38 ) - 3( 25 )= 1.

 \tt\longmapsto 76 - 75= 1.

 \tt\longmapsto 1 = 1.

Hance LHS = RHS.

\rule{90}1

Taking Equation ( 2 )

 \tt \longmapsto 2x - 4y =  - 24.

 \tt \longmapsto 2( 38 )- 4( 25 )=  - 24.

 \tt \longmapsto 76 - 100 =  - 24.

 \tt \longmapsto -24 =  - 24.

Hance LHS = RHS.

Similar questions