Math, asked by saichandra6078, 7 months ago

If x=(3+2√2) find x^+1/x^2

Answers

Answered by RvChaudharY50
35

Solution :-

x = (3 + 2√2)

→ 1/x = 1/(3 + 2√2)

Rationlizing RHS part ,

→ 1/x = 1/(3 + 2√2) * (3 - 2√2) / (3 - 2√2)

using (a + b)(a - b) = a² - b² Now,

→ 1/x = (3 - 2√2) / {(3)² - (2√2)²}

→ 1/x = (3 - 2√2) / (9 - 8)

→ 1/x = (3 - 2√2)

So ,

(x + 1/x) = (3 + 2√2) + (3 - 2√2)

→ (x + 1/x) = 6

squaring both sides Now,

(x + 1/x)² = 6²

using (a + b)² = a² + b² + 2ab in LHS now,

→ x² + 1/x² + 2 * x * 1/x = 36

→ x² + 1/x² + 2 = 36

→ (x² + 1/x²) = 36 - 2

→ (x² + 1/x²) = 34 (Ans.)

Answered by Anonymous
37

➝ Question :

If x =  3 + 2\sqrt{2},then find the value of x^{2} + \dfrac{1}{x^{2}}

➝ To Find :

The value of the equation :p

\boxed{x^{2} + \dfrac{1}{x^{2}}}

➝ Given :

The value of x....

  • x = 3 + 2\sqrt{2}[Equation...(ii)]p

➝ We Know :

  • \mathtt{(a + b)^{2} = a^{2} + b^{2} + 2ab}

  • \mathtt{a^{2} - b^{2} = (a + b)(a - b)}

➝ Concept :

We know that ,if x = 3 + 2\sqrt{2} ,then \dfrac{1}{x} = 3 - 2\sqrt{2}

Proof :

If x = 3 + 2\sqrt{2}

then,

\dfrac{1}{x} = \dfrac{1}{3 + 2\sqrt{2}}

\Rightarrow \dfrac{1}{x} = 3 + 2\sqrt{2} \times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}}

\Rightarrow \dfrac{1}{x} = \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2} \times 3 - 2\sqrt{2}}

Using the identity :

a^{2} - b^{2} = (a + b)(a - b)

we get :

\Rightarrow \dfrac{1}{x} = \dfrac{3 - 2\sqrt{2}}{3^{2} - \big(2\sqrt{2}\big)^{2}}

\Rightarrow \dfrac{1}{x} = \dfrac{3 - 2\sqrt{2}}{9 - 8}

\Rightarrow \dfrac{1}{x} = \dfrac{3 - 2\sqrt{2}}{1}

\Rightarrow \dfrac{1}{x} = 3 - 2\sqrt{2}

So ,we get the value of \dfrac{1}{x} as 3 - 2\sqrt{2}[Equation...(ii)]

➝ Solution :

Equation...(i)

\mathtt{x = 3 + 2\sqrt{2}}

Equation...(ii)

\mathtt{3 - 2\sqrt{2}}

On adding equation (i) and (ii) ,we get :-

ATP :

\boxed{x + \dfrac{1}{x}}

\mathtt{\Rightarrow x + \dfrac{1}{x}}

\mathtt{\Rightarrow 3 + 2\sqrt{2} + 3 - 2\sqrt{2}}

\mathtt{\Rightarrow 3 + \cancel{2\sqrt{2}} + 3 - \cancel{2\sqrt{2}}}

\mathtt{\Rightarrow 3 + 3}

\mathtt{\Rightarrow  6}

Hence ,

\boxed{\therefore x + \dfrac{1}{x} = 6}

Given Equation :

\mathtt{x + \dfrac{1}{x} = 6}

Squaring on both the sides ,we get :

\mathtt{\left(x + \dfrac{1}{x}\right)^{2} = 6^{2}}

Using the identity :

\mathtt{(a + b)^{2} = a^{2} + b^{2} + 2ab}

we get ,

\mathtt{x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} + 2 \times x \times \dfrac{1}{x} = 36}

\mathtt{x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} + 2 \times \cancel{x} \times \dfrac{1}{\cancel{x}} = 36}

\mathtt{x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} + 2 = 36}

\mathtt{x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} = 36 - 2}

\mathtt{x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} = 34}

Hence ,the value of x^{2} + \dfrac{1}{x^{2}} is 34....

➝ Extra Information :

Some useful identities :

  • (a + b)^{2} = a^{2} + b^{2} - 2ab

  • a^{2} + b^{2} = (a + b)^{2} - 2ab

  • \bigg(x - \dfrac{1}{x}\bigg)^{2} = x^{2} +  \bigg(\dfrac{1}{x}\bigg)^{2} - 2
Similar questions