Math, asked by nisha2473, 1 year ago

if x = 3+2√2 find √x + 1/√x

Answers

Answered by Mankuthemonkey01
10
x = 3 + 2√2

 \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\
rationalising, we get

 \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \\   \frac{1}{x} =  >  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  =  >  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{ {3}^{2} - (2 \sqrt{2)}  {}^{2}  }  \\  =  >  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  =  >  \frac{1}{x}  = 3 - 2 \sqrt{2}
Now , value of √x =

 \sqrt{3 + 2 \sqrt{2} }
Let,
 \sqrt{3 + 2 \sqrt{2} }  =  \sqrt{a}  +  \sqrt{b}  \\  =  > ( \sqrt{3 + 2 \sqrt{2} } ) {}^{2}  = ( \sqrt{a}  +  \sqrt{b} ) {}^{2}  \\  =  > 3 + 2 \sqrt{2}  = a + b + 2 \sqrt{ab}
Comparing, we get

a + b = 3
and 2√(ab) = 2√2

=> √(ab )= √2

=> ab = 2

Now only one possible number can satisy this equation that is
a = 2 and b = 1
a + b = 2 + 1 = 3
ab = 2 × 1 = 2

Hence a = 2 and b = 1

Also, we know that,
  \sqrt{x}  = \sqrt{3 + 2 \sqrt{2} }  =  \sqrt{a}  +  \sqrt{b}  \\  =  >  \sqrt{x}  =  \sqrt{a}  +  \sqrt{b}  \\  =  >  \sqrt{x}  =  \sqrt{2}  +  \sqrt{1}  \\  =  >  \sqrt{x}  =  \sqrt{2}  + 1
Now we know that 1/x = 3 -2√2

Hence by following the process of √x,
1/√x = √2 - 1

Adding √x + 1/√x

= √2 + 1 + √2 - 1

=> 2√2

Hence your answer is 2√2

Hope it helps dear friend ☺️✌️

Mankuthemonkey01: Thanks di
Similar questions