Math, asked by PrakharVerma023, 7 months ago

if x=3+2√2 then find the value of √x-1/√x​

Answers

Answered by priya311374
1

Answer:

2-√2/3

Step-by-step explanation:

mark brainlist

Answered by Anonymous
16

\green\bigstarAnswer:

 \sf  \boxed{ \sqrt{x}  \:  -  \:  \dfrac{1}{ \sqrt{x} \:   }  =  \: 2}

\pink\bigstarGiven:

  • x = 3 + 2√2

\red\bigstarTo find:

  •  \sf \sqrt{x}  \:  -  \:  \dfrac{1}{ \sqrt{x} }

\red\bigstar Solution:

Given that x = 3 + 2√2

So, \sqrt{x} = \sqrt{3\: + \: 2 \sqrt{2}}

 \sf \:  \implies \:  \sqrt{x}  \:  =  \:  \sqrt{2 \:  +  \:( 2 \:  \times  \: 1 \:  \times  \sqrt{2} ) \:  +  \: 1}

 \sf \implies \sqrt{x}   =  \sqrt{( { \sqrt{2} })^{2}  \:    +  \: (2  \times \sqrt{2} \times 1)+  \:  {(1)}^{2} }

(By using (a + b)² = a² + 2ab + b²)

 \sf \:  \implies \:  \sqrt{x}  \:  =  \sqrt{  {( \sqrt{2} \:  +  \: 1 )}^{2}}

 \sf \implies \:  \sqrt{x}  \:  =  \: ( \sqrt{2} \:   +  \: 1)

 \sf   \boxed{ \sf\therefore \:  \sqrt{x}  \:  =  \:  \sqrt{2}  \:  +  \: 1}

Now let's find the value of \dfrac{1}{ \sqrt{x} }

  \sf\dfrac{1}{ \sqrt{x} }  \:  =  \:  \dfrac{1}{ \sqrt{2} \:  +  \: 1 }

By rationalising the denominator,

   \sf \implies\dfrac{1}{ \sqrt{x} }  \:  =  \:  \dfrac{1 \:  \times ( \sqrt{2}   -   1) }{ (\sqrt{2} +  1)( \sqrt{2}   -  1)}

( By using (a + b) (a - b) = - )

 \sf\implies\dfrac{ 1}{ \sqrt{x} }  \:  =  \:  \dfrac{ \sqrt{2}  - 1}{  ({ \sqrt{2} )}^{2}  \:  -  \:  {(1)}^{2} }

( \because √a × √a = a )

 \sf\implies\dfrac{1}{ \sqrt{x} }  \:  =  \:  \dfrac{ \sqrt{2}  - 1}{ 2 - 1}

 \sf\implies\dfrac{1}{ \sqrt{x} }  \:  =   \dfrac{ \sqrt{2} \:   -   \: 1 } {1}

\sf  \boxed{ \sf\implies\dfrac{1}{ \sqrt{x} }  \:  =  { \sqrt{2} \:   -  \: 1 } }

\sf Now, \sqrt{x} - \dfrac{1}{\sqrt{x}} :

  \sf \: Now \: by \: substituting \: the \: values \: of \:  \sqrt{x}  \: and \:   \dfrac{1}{ \sqrt{x} }, \: we \: get

 =   \sf\:  \sqrt{2}  \:  +  \: 1 \:  -  \: ( \sqrt{2}  \:  -  \: 1 \: )

 =   \sf\:  \sqrt{2}  \:  +  \: 1 \:  -  \:  \sqrt{2} \:   +  \: 1

 =  \:  \sf \cancel{ \sqrt{2} } \:  +  \: 1 \:   \cancel{-  \sqrt{2}} \:   +  \: 1

 =  \sf \: 1 \:  +  \: 1

 = \sf  \boxed{  2 }

 \sf  \boxed{\therefore \sqrt{x}  \:  -  \:  \dfrac{1}{ \sqrt{x} \:   }  =  \: 2}

\pink\bigstar Concepts Used:

  • Factorisation of polynomial
  • Cancellation of root and power
  • Rationalisation of Denominator
  • (a + b)(a - b) = a² - b²
  • (a + b)² = a² + 2ab + b²
  • √a × √a = a
  • Negative sign × Negative sign = Positive sign
  • Cancellation of numbers with opposite signs

\blue\bigstarExtra Information:

  • (a + b)² = a² + 2ab + b²
  • (a – b)² = a² – 2ab + b²

  • a² – b² = (a + b)(a – b)

  • (x + a)(x + b) = x² + (a + b) x + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)³ = a³ + b³ + 3ab (a + b)

  • (a – b)³ = a³ – b³ – 3ab (a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)
Similar questions