If x=3+2√2 then find (√x-1/√x)
Answers
Answered by
0
Step-by-step explanation:
Let √x - 1/√x = a
Squaring both the sides,
x + 1/x - 2 = a^2
Putting the value,
3–2√2 + 1/(3–2√2) - 2 = a^2
a^2 = 1 - 2√2 + 1/(3–2√2)
= [(3–2√2) (1–2√2) + 1] / 3–2√2
= {3 - 8√2 + 9} / 3–2√2
= [12 - 8√2] / 3–2√2
Rationalising both the sides
= {(12 - 8√2)(3+2√2)} ÷ (9–8)
= 36 + 24√2 - 24√2 + 16(2)
= 36 - 32
=> 4
a^2 = 4
a = √4
a = 2, -2
So,
√x - 1/√x = a = 2, -2.
Answered by
0
x= 3+2√2
1/x= 1/(3+2√2)
1/x= 1/(3+2√2) ×(3-2√2)/(3-2√2)
1/x= (3-2√2)/(9-8)
1/x= 3-2√2.
Now,
x+1/x= (3+2√2)+(3-2√2)
or, x+1/x= 6
or, (√x)² + (1/√x)² = 6
or, (√x)²+(1/√x)²-2= 6-2
or, (√x - 1/√x)²= 4
or, (√x-1/√x)= √4
or, (√x - 1/√x) = 2, -2.
Similar questions