Math, asked by Happyyy, 1 year ago

If x=√3+√2\√3-√2 and y=√3-√2\√3+√2, find the value of x^2-y^2+xy, if √6=2.4

Answers

Answered by Floydsome
5
here's your solution..
Attachments:

Happyyy: Thanks a lot!!
Floydsome: wc
Answered by sandy1816
0

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ y =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }   \\ \\  \\ x + y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ x + y =  \frac{( { \sqrt{3}  +  \sqrt{2} })^{2} + ( { \sqrt{3}  -  \sqrt{2} })^{2}  }{3 - 2}  \\  \\ x + y = 2(3 + 2) = 10 \\  \\  \\ x - y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  } -  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }   \\  \\  x - y =  \frac{( { \sqrt{3}  +  \sqrt{2} })^{2} - ( { \sqrt{3} -  \sqrt{2}  })^{2}  }{3 - 2}  \\  \\ x - y = 4 \sqrt{3}  \sqrt{2} = 4 \sqrt{6}   \\  \\ \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  = 10 \times 4 \sqrt{6}  \\  = 40 \sqrt{6} \\  = 40 \times 2.4 \\  = 96 \\  \\ xy =  1 \\  \\  \\  {x}^{2}  -  {y}^{2}  + xy = 96 + 1 \\  = 97

Similar questions