Math, asked by arun473, 11 months ago

if x=√3-√2/√3+√2 and y = √3+√2 /√3-√2 , find the value of x2 + y2 + x y​

Answers

Answered by mahamahmood95
3

Step-by-step explanation:

let x=√3 -√2/√3 + √2

let y=√3 +√2/√3-√2

then x²=(3+2-2√6)/3+2+2√6

x²=(5-2√6)/(5+2√6)

y²=(5+2√6)/(5-2√6)

xy=1

x²+y²+xy=(5-2√6/5+2√6)+(5+2√6/5-2√6)+1

=>(5-2√6)²+(5+2√6)²+(5+2√6)(5-2√6)

=>(25+4(6)-20√6+25+4(6)+20√6)+25-24

=>>(25+24+25+24)+(25-24)

=>>(98+1)

=>x²+y²+xy =99

Answered by sandy1816
1

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ y =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  \\ xy = 1 \\  \\ x + y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ x + y =  \frac{( { \sqrt{3}  +  \sqrt{2} })^{2} + ( { \sqrt{3}  -  \sqrt{2} })^{2}  }{3 - 2}  \\  \\ x + y = 2(3 + 2) = 10 \\  \\  \\  {x}^{2}  +  {y}^{2}  + xy = ( {x + y})^{2}  - xy \\  =  {10}^{2}  - 1 \\  = 99

Similar questions