if x = √3-√2/√3+√2 and y= √3+√2/√3-√2, find the value of x³+y³+xy
Answers
Answer:
_______________...❀♡❀...________________
_______________...❀♡❀...________________
Step-by-step explanation:
Answer:
x^2+xy+y^2=99x2+xy+y2=99
Step-by-step explanation:
Given : x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}x=3−23+2 and y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}y=3+23−2
We have to find x^2+xy+y^2x2+xy+y2
First we calculate x^2x2
Consider x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}x=3−23+2
We first rationalize the denominator by multiply and divide by {\sqrt{3}+\sqrt{2}}3+2
we get,
x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}x=3−23+2×3+23+2
Simplify, we get,
\begin{gathered}x=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}\\\\ x=\frac{(\sqrt{3}+\sqrt{2})^2}{3-2}\\\\ x=(\sqrt{3}+\sqrt{2})^2\end{gathered}x=(3)2−(2)2(3+2)2x=3−2(3+2)2x=(3+2)2
Thus, squaring both side we get,
x^2=((\sqrt{3}+\sqrt{2})^2)^2x2=((3+2)2)2
using algebraic identity (a+b)^2=a^2+b^2+2ab(a+b)2=a2+b2+2ab , we have,
x^2=(3+2+2\sqrt{6})^2=(5+2\sqrt{6})^2x2=(3+2+26)2=(5+26)2 ..