Math, asked by samuraifreefire2007, 2 months ago

if x=√3+√2/√3-√2 and y=√3-√2/√3+√2 find x^2+y^2-xy

Answers

Answered by subu645
2

 \bold \red{x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \: and \:  y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\bold \pink{We \:  have \:  to \:  find \:  x^2+xy+y^2}

 \bold \green{First  \: we \:  calculate \:  x^2}

\bold \blue{Consider \:  x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

\small \bold \green{We \:  first \:  rationalize \:  the \:  denominator  \:  by  \: multiply}

 \bold \red{and  \: divide \:  by {\sqrt{3}+\sqrt{2}}}

We get,

\bold \pink{x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} x}

Simplify, we get,

\begin{gathered} x=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}\\\\ x=\frac{(\sqrt{3}+\sqrt{2})^2}{3-2}\\\\ x=(\sqrt{3}+\sqrt{2})^2\end{gathered}

Thus, squaring both side we get,

\bold \blue{x^2=((\sqrt{3}+\sqrt{2})^2)^2}

using algebraic identity

\bold \pink{(a+b)^2=a^2+b^2+2 ab}

we have,

\bold \green{x^2=(3+2+2\sqrt{6})^2=(5+2\sqrt{6})^2}

\bold \blue{Similarly, for \:  y^2}

\bold \red{Consider y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\small \bold \green{We \:  first \:  rationalize  \: the \:  denominator \:   by  \: multiply}

\bold \green{and  \: divide \:  by \:  {\sqrt{3}-\sqrt{2}} }

we get,

\bold \pink{x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

Simplify, we get,

\bold \red{y=(\sqrt{3}-\sqrt{2})^2}

\bold \pink{y^2=((\sqrt{3}-\sqrt{2})^2)^2}

we have,

y^2=(3+2-2\sqrt{6})^2=(5-2\sqrt{6})^2

then \:  x^2+xy+y^2=(5+2\sqrt{6})^2+(5+2\sqrt{6})(5-2\sqrt{6})+(5-2\sqrt{6})^2

Simplify , we get,

\begin{gathered}x^2+xy+y^2=25+24+20\sqrt{6}+25-24+25+24-20\sqrt{6}\\\\ x^2+xy+y^2=25+24+25+25\\\\ x^2+xy+y^2=99\end{gathered}

Thus, \:  x^2+xy+y^2=99

Similar questions