Math, asked by naman112iscool, 8 months ago

If x = √3 -√2/ √3 + √2 and y = √3 + √2 / √3 - √2 then find x² + xy + y²

Answers

Answered by ancharuu
0
Follow me plz

Mark me brainliest
Attachments:
Answered by kushalchauhan07
3

Answer:-

x =  \frac{ \sqrt{3} -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2} } \:  \:  and \:  \:  \: y =  \frac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }

to \: find :   \:  \:  \: {x}^{2} +xy +   {y}^{2}

( \frac{ \sqrt{3} -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2} })^{2} +( \frac{\sqrt{3} -  \sqrt{2} }{\sqrt{3} +  \sqrt{2}})( \frac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}}) + ( \frac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}})^{2}

 \frac{3 - 2}{3 + 2} +  \frac{( \sqrt{3} ) ^{2} - ( \sqrt{2})^{2} }{( \sqrt{3}) ^{2}  - ( \sqrt{2})^{2}} +  \frac{3 + 2}{3 - 2}

 \frac{1}{5}  +  \frac{( \sqrt{3} -  \sqrt{2})^{2} - 2 \times  \sqrt{3} \times  \sqrt{2} }{( \sqrt{3} -  \sqrt{2})^{2} - 2 \times  \sqrt{3} \times  \sqrt{2} }  +  \frac{5}{1}

∴[(a - b)^{2} - 2× a× b)]

.⇒ \frac{1}{5} +  \frac{3 - 2 - 2 \sqrt{5} }{3 - 2 - 2 \sqrt{5}} +  \frac{5}{1}

 \frac{1}{5} +  \frac{1 - 2 \sqrt{5} }{1 - 2 \sqrt{5}} +  \frac{5}{1}

 \frac{1}{5}  +  \frac{1}{1} +  \frac{5}{1}

 \frac{1 + 5 + 25}{5}  =  \frac{31}{5}

Similar questions