if x =√3+√2/√3-√2, find the value of x²
Answers
Answered by
0
Answer:
Step-by-step explanation:
Consider x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}
We first rationalize the denominator by multiply and divide by {\sqrt{3}+\sqrt{2}}
we get,
x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Simplify, we get,
x=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}\\\\ x=\frac{(\sqrt{3}+\sqrt{2})^2}{3-2}\\\\ x=(\sqrt{3}+\sqrt{2})^2
Thus, squaring both side we get,
x^2=((\sqrt{3}+\sqrt{2})^2)^2
using algebraic identity (a+b)^2=a^2+b^2+2ab , we have,
Similar questions