Math, asked by lohi7144, 10 months ago

if x =√3+√2/√3-√2, find the value of x²​

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x^{2}=49+20\sqrt{6}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies x =\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies x^{2}  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {x}^{2}  \\  \\ \tt:  \implies (\frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  } ) ^{2}  \\  \\ \tt:  \implies  (\frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  } )^{2}  \\  \\ \tt:  \implies  (\frac{ { (\sqrt{3}  +  \sqrt{2} )}^{2} }{ { (\sqrt{3}) }^{2} -  {( \sqrt{2})}^{2}  } )^{2}  \\  \\  \tt:  \implies  (\frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2} )}^{2}  + 2 \times  \sqrt{3}  \times  \sqrt{2}  }{3 - 2} ) ^{2}  \\  \\ \tt:  \implies ( \frac{3 + 2 + 2 \sqrt{6} }{1})^{2}   \\  \\ \tt:  \implies (5 + 2 \sqrt{6} )^{2}  \\  \\ \tt:  \implies {5}^{2}  +  {(2 \sqrt{6} )}^{2}  + 2 \times 5 \times 2 \sqrt{6}  \\  \\ \tt:  \implies 25 + 24 + 20 \sqrt{6}  \\  \\  \green{\tt:  \implies 49 + 20 \sqrt{6} } \\  \\   \green{\tt \therefore  {x}^{2}  = 49 + 20 \sqrt{6} }

Answered by ItzArchimedes
67

ANSWER:

Given

  • x = √3 + √2/√3 - √2

Squaring on both sides

→ x² = (√3 + √2)²/(√3 - √2)²

Simplifying using

♦ (a + b)² = a² + 2ab + b²

♦ (a - b)² = a² - 2ab + b²

→ x² = (√3)² + 2(√3)(√2) + (√2)²/(√3)² - 2(√3)(√2) + (√2)²

→ x² = 3 + 2√6 + 2/3 - 2√6 + 2

→ x² = 5 + 2√6/5 - 2√6

Simplifying by rationalising denominator

→ x² = (5 + 2√6)(5 + 2√6)/(5 - 2√6)(5 + 2√6)

Using

♦ (a + b)(a - b) = a² - b²

→ x² = 5² + 2(5)(2√6) + (2√6)²/5² - (2√6)²

→ x² = 25 + 20√6 + 24/25 - 24

→ x² = 49 + 20√6

Hence, = 49 + 206


BrainlyConqueror0901: well done : )
Similar questions