Math, asked by krishna155347, 10 months ago

if x = √3 - 2, find the value of (x + 1 / x )^3

Answers

Answered by abhi569
2

Answer:

-64

Step-by-step explanation:

⇒ x = √3 - 2

⇒ 1 / x = 1 / ( √3 - 2 )

Multiplying and dividing RHS by √3 + 2

⇒ 1 / x =  ( √3 + 2 ) / [ ( √3 - 2 )( √3 + 2 )

⇒ 1 / x = ( √3 + 2 ) / [ ( √3 )^2 - ( 2 )^2 ]      { ( a + b )( a - b ) = a^2 - b^2 }

⇒ 1 / x = ( √3 + 2 ) / [ 3 - 4 ]

⇒ 1 / x = ( √3 + 2 ) / ( - 1 )

⇒ 1 / x = - √3 - 2

Therefore,

⇒ x + 1 / x = ( √3 - 2 ) + ( - √3 - 2 )

⇒ x + 1 / x = √3 - 2 - √3 - 2

⇒ x + 1 / x = - 4

Thus,

⇒( x + 1 / x )^3 = ( - 4 )^3 = - 64

Answered by Abhishek474241
2

Answer:-24√3

Given

X=√3-2

To find

(x\frac{1}{x}

Solution

We know that

(x+\frac{1}{x})³=x³+\frac{1}{x}³+3x×\frac{1}{x}(x+\frac{1}{x})

Now finding for

\frac{1}{x}

X=√3-2

\frac{1}{x}= \sf{\dfrac{1}}{\sqrt{3-2}}(Rationalising)

=>\frac{1}{x}= \sf{\dfrac{\sqrt{3}}{1}}×\sf{\dfrac{\sqrt{3}}{1}}

\frac{1}{x}=√3+2

Putting the values in

(x\frac{1}{x}

=>(x\frac{1}{x})³=(√3-2+√3+2)³

=(2√3)³

=24√3

Similar questions