if x = √3 - 2, find the value of (x + 1 / x )^3
Answers
Answered by
2
Answer:
-64
Step-by-step explanation:
⇒ x = √3 - 2
⇒ 1 / x = 1 / ( √3 - 2 )
Multiplying and dividing RHS by √3 + 2
⇒ 1 / x = ( √3 + 2 ) / [ ( √3 - 2 )( √3 + 2 )
⇒ 1 / x = ( √3 + 2 ) / [ ( √3 )^2 - ( 2 )^2 ] { ( a + b )( a - b ) = a^2 - b^2 }
⇒ 1 / x = ( √3 + 2 ) / [ 3 - 4 ]
⇒ 1 / x = ( √3 + 2 ) / ( - 1 )
⇒ 1 / x = - √3 - 2
Therefore,
⇒ x + 1 / x = ( √3 - 2 ) + ( - √3 - 2 )
⇒ x + 1 / x = √3 - 2 - √3 - 2
⇒ x + 1 / x = - 4
Thus,
⇒( x + 1 / x )^3 = ( - 4 )^3 = - 64
Answered by
2
Answer:-24√3
Given
X=√3-2
To find
(x)³
Solution
We know that
(x+)³=x³+³+3x×(x+)
Now finding for
X=√3-2
= (Rationalising)
=>= ×
=√3+2
Putting the values in
(x)³
=>(x)³=(√3-2+√3+2)³
=(2√3)³
=24√3
Similar questions