Math, asked by vjkama, 1 year ago

if x=3-2 root 2 then find (x-1/x)^3

Answers

Answered by Anonymous
58

Answer:

→ -128√2 .

Step-by-step explanation:

Given :-

→ x = 3 - 2√2 .

Then, 1/x = 1/(3 - 2√2 ) .

= 1/( 3 - 2√2 ) × ( 3 + 2√2 )/( 3 + 2√2 ) .

= ( 3 + 2√2 )/( 3² - (2√2)² ) .

= 3 + 2√2 .

Therefore, ( x - 1/x )³

= ( 3 - 2√2 - 3 - 2√2 ) ³ .

= ( -4√2 )³ .

= - 128√2 .

✔✔ Hence, it is solved ✅✅.

THANKS

Answered by hukam0685
6

\bf \left( {x -  \frac{1}{x} } \right)^{3}  =  - 128 \sqrt{2}  \\

Step-by-step explanation:

Given:

  • x = 3 - 2 \sqrt{2}  \\

To find:

  • Find the value of  \left({x -  \frac{1}{x} }\right)^{3}  \\

Solution:

Concept to be used:

  • Rationalize the denominator for 1/x.
  • Simply the expression.

Step 1:

Simplify 1/x.

 \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} } \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }   \\

or

 \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{( {3)}^{2}  - (2 \sqrt{2}) ^{2} }    \\

or

\frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}    \\

or

\bf \frac{1}{x}  = 3 + 2 \sqrt{2}  \\

Step 2:

Simplify \left(x -  \frac{1}{x}\right ) \\ .

x -  \frac{1}{x}  = 3 - 2 \sqrt{2}  - 3 - 2 \sqrt{2}  \\

or

\bf x -  \frac{1}{x}  =  - 4 \sqrt{2}...eq1  \\

Step 3:

Calculate  \left({x -  \frac{1}{x} }\right)^{3}  \\

Take cube of eq1.

( {x -  \frac{1}{x} })^{3}  =  {( - 4  \sqrt{2})  }^{3}  \\

or

 \left( {x -  \frac{1}{x} } \right)^{3}  =  - 128 \sqrt{2}  \\

Thus,

 \bf \left( {x -  \frac{1}{x} } \right)^{3}  =  - 128 \sqrt{2}  \\

Learn more:

1) if x = 3 + √8. find the value of x^2 + 1/x^2

https://brainly.in/question/4359249

2) if x-1/x=8 find x3-1/x3

https://brainly.in/question/10705814

#SPJ3

Similar questions