Math, asked by soumikC9, 9 months ago

if x = √3 - √2, then find the value of (x - 1/x)^2

Answers

Answered by BrainlyPopularman
4

ANSWER :

GIVEN :

x =  \sqrt{3}  -  \sqrt{2}

TO FIND :

 {(x -  \frac{1}{x} )}^{2}

SOLUTION :

FIRST WE HAVE TO FIND (1/X)

 { \bold{ =  > \:  \:  \frac{1}{x} =  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  }} \\  \\ { \bold{ =  > \:  \:  \frac{1}{x}    =  \frac{1}{ \sqrt{3} -  \sqrt{2}  } \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  }} \\  \\ { \bold{ =  >  \frac{1}{x} =  \frac{ \sqrt{3} +  \sqrt{2}  }{3 - 2}  =  \sqrt{3} +  \sqrt{2}   }}

NOW WE HAVE TO FIND

{ \bold{ { =  > (x -  \frac{1}{x}) }^{2} = {( \sqrt{3} -  \sqrt{2}  -  \sqrt{3} -  \sqrt{2} )  }^{2}   }} \\  \\ { \bold{ =  >  {(x -  \frac{1}{x} )}^{2} =  {( - 2 \sqrt{2} )}^{2}  = 4 \times 2 = 8 }}

Similar questions