Math, asked by Anupama501, 1 month ago

If x = √3/2, then show that (1+x/1+√1+x) + (1-x/1-√1-x) = 1​

Answers

Answered by XxitzKing02xX
28

Given: x = </p><p>\frac{\sqrt{3}}{2}

To find: </p><p>\frac{1+x}{1+\sqrt{1+x}}+\frac{1-x}{1-\sqrt{1-x}}

\frac{1+x}{1+\sqrt{1+x}}+\frac{1-x}{1-\sqrt{1-x}}

Put Value of x in fiven expresion we get,

\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}

\frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}

\frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{4+2\sqrt{3}}{4}}}+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{4-2\sqrt{3}}{4}}}

\frac{\frac{2+\sqrt{3}}{2}}{\frac{2+\sqrt{4+2\sqrt{3}}}{2}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{2-\sqrt{4-2\sqrt{3}}}{2}}

\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}

\frac{(2+\sqrt{3})(2-\sqrt{4-2\sqrt{3}})+(2-\sqrt{3})(2+\sqrt{4+2\sqrt{3}})}{(2+\sqrt{4+2\sqrt{3}})(2-\sqrt{4-2\sqrt{3}})}

\frac{4-\sqrt{12-6\sqrt{3}}+2\sqrt{3}2\sqrt{4-2\sqrt{3}}+42\sqrt{3}-\sqrt{12+6\sqrt{3}}+2\sqrt{4+6\sqrt{3}}}{4+2\sqrt{4+2\sqrt{3}}-2\sqrt{4-2\sqrt{3}}-\sqrt{16-12}}

\frac{8-\sqrt{12-6\sqrt{3}}-\sqrt{12+6\sqrt{3}}+2\sqrt{4+2\sqrt{3}}-2\sqrt{4-2\sqrt{3}}}{2+2\sqrt{4+2\sqrt{3}}-2\sqrt{4-2\sqrt{3}}}

\frac{8-(3-3)-(3+\sqrt{3})+2(1+\sqrt{3})-2(1-\sqrt{3})}{2+2(1+\sqrt{3})-2(1-\sqrt{3})}

\frac{8-6+\sqrt{3}-\sqrt{3}+2-2+2\sqrt{3}+2\sqrt{3}}{2+2+2\sqrt{3}-2+2\sqrt{3}}

\frac{2+2\sqrt{3}+2\sqrt{3}}{2+2\sqrt{3}+2\sqrt{3}}

⇒  1

━━━━━━━━❪❐━━━━━━

Answered by Salmonpanna2022
23

Step-by-step explanation:

 \bf \underline{Given-} \\

 \rm{x =  \frac{ \sqrt{3} }{2} } \\

 \bf \underline{To \: show-} \\

\mathsf{ \frac{1 + x}{1 +  \sqrt{1 + x} }  +  \frac{1 - x}{1 - \sqrt{1 - x} }  = 1}  \\

 \bf \underline{Solution-} \\

 \rm{ \sqrt{1 + x} } \\  =  \sqrt{1 +  \frac{ \sqrt{3} }{2} }  \\   = \sqrt{ \frac{ 2 +  \sqrt{3} }{2} }  \\   = \sqrt{ \frac{4 + 2 \sqrt{3} }{4} }  \\

 =  \sqrt{ \frac{3 + 1 + 2 \times  \sqrt{3}   \times 1}{4} }  \\

 =  \sqrt{ \frac{( \sqrt{3}  + 1 {)}^{2} }{4} }  \\

 =  \frac{ \sqrt{3} + 1 }{2}  \\

\textsf{Similarly,} \\

\rm{ \sqrt{1 - x} } \\

\rm{ =  \frac{ \sqrt{3}  - 1}{2} } \\

 \rm{\therefore \: \frac{1 + x}{1 +  \sqrt{1 + x} }   +  \frac{1 - x}{1 -  \sqrt{1 - x} } } \\

 \rm{= \frac{1 +  \frac{ \sqrt{3} }{2} }{1  +  \frac{ \sqrt{3} + 1 }{2} }   +  \frac{ 1 - \frac{ \sqrt{3} }{2} }{1 -  \bigg( \frac{ \sqrt{3} - 1 }{2} \bigg) }  } \\

\rm{= \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} + 1 } +  \frac{2 -  \sqrt{3} }{2 - ( \sqrt{3}  - 1)}  } \\

\rm{=  \frac{2 +  \sqrt{3} }{3 +  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{3 -  \sqrt{3} } } \\

\rm{=  \frac{2 +  \sqrt{3} }{3 +  \sqrt{3} }  \times  \frac{3 -  \sqrt{3} }{3 -  \sqrt{3} } +  \frac{2 -  \sqrt{3} }{3 -  \sqrt{3} } \times  \frac{3 +  \sqrt{3} }{3 +  \sqrt{3} }   } \\

 \rm{=  \frac{(2 +  \sqrt{3} )(3 -  \sqrt{3} ) + (2 -  \sqrt{3})(3 +  \sqrt{3}  )}{(3 {)}^{2}  - ( \sqrt{3}  {)}^{2} } } \\

\rm{= \frac{6 - 2 \sqrt{3} + 3 \sqrt{3}   - 3 + 6 + 2 \sqrt{3} - 3 \sqrt{3}   - 3}{9 - 3}  } \\

\rm{= \frac{12 - 6}{6}  } \\

\rm{= \frac{6}{6} } \\

\rm{= 1} \\

\textsf{LHS = RHS} \\

 \bf \underline{Hence \: proved.-} \\

Similar questions