Math, asked by sarthakbts, 11 months ago

if x = 3+2 under root 2 so find the value of (x-1/x) ^3

Answers

Answered by Anonymous
6

Answer :-

The value of (x - 1/x)³ is 128√2.

Solution :-

x = 3 + 2√2

Reciprocal on both sides

1/x = 1/(3 + 2√2)

Rationalise the denominator

 \\ \\   \tt =   \dfrac{1}{3 + 2 \sqrt{2} } \times  \dfrac{3  -  2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\ \\ \\ \tt =  \dfrac{3 - 2 \sqrt{2} }{ {3}^{2} -  {(2 \sqrt{2})}^{2} } \\ \\  \\  \tt =  \dfrac{3 - 2 \sqrt{2} }{9 - 4(2)} \\  \\  \\  \tt =  \frac{3 - 2 \sqrt{2} }{9 - 8} \\  \\  \\  \tt =  \frac{3 - 22}{1} \\  \\  \\  \tt = 3 - 2 \sqrt{2} \\  \\  \\  \bf \therefore  \dfrac{1}{x} = 3 - 2 \sqrt{2} \\  \\

Now find the value of x - 1/x

x - 1/x = 3 + 2√2 - (3 - 2√2)

⇒ x - 1/x = 3 + 2√2 - 3 + 2√2

⇒ x - 1/x = 4√2

Cubing on both sides

⇒ (x - 1/x)³ = (4√2)³

⇒ (x - 1/x)³ = 64(2√2)

⇒ (x - 1/x)³ = 128√2

Therefore the value of (x - 1/x)³ is 128√2.

Similar questions