Math, asked by seema4948, 10 months ago

if X= 3-2root2 find the value of root X +1/root X and root x-1/root X p​

Answers

Answered by amitnrw
2

Given :  x = 3  - 2√2

To find : x + 1/x   & x - 1/x

Solution:

x = 3  - 2√2

1/x = 1/(3  - 2√2)

on rationalizing

= (3 + 2√2)/( 9 - 9)

= 3  + 2√2

x + 1/x  =  3  - 2√2 +  3 + 2√2

=> x + 1/x  =  6

x - 1/x  = 3  - 2√2  -(  3 + 2√2 )

=  3  - 2√2 - 3  - 2√2

= -4√2

x + 1/x  =  6

x - 1/x  = -4√2

Learn more:

if x=1/4-x, find : x+1/x - Brainly.in

https://brainly.in/question/5639594

Answered by Swarup1998
0

Given: x=3-2\sqrt{2}

To find: \sqrt{x}+\frac{1}{\sqrt{x}},\:\sqrt{x}+\frac{1}{\sqrt{x}}

Solution:

Now, x=3-2\sqrt{2}

\Rightarrow x=2-2\sqrt{2}+1

\Rightarrow x=(\sqrt{2})^{2}-2*\sqrt{2}*1+1^{2}

\Rightarrow x=(\sqrt{2}-1)^{2}

\Rightarrow \sqrt{x}=\sqrt{2}-1

Then, \frac{1}{\sqrt{x}}=\frac{1}{\sqrt{2}-1}

\Rightarrow \frac{1}{\sqrt{x}}=\frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}

\Rightarrow \frac{1}{\sqrt{x}}=\frac{\sqrt{2}+1}{2-1}

\Rightarrow \frac{1}{\sqrt{x}}=\sqrt{2}+1

Now, \sqrt{x}+\frac{1}{\sqrt{x}}

\quad=\sqrt{2}-1+\sqrt{2}+1

\quad=2\sqrt{2}

\Rightarrow \boxed{\sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt{2}}

and \sqrt{x}-\frac{1}{\sqrt{x}}

\quad=\sqrt{2}-1-\sqrt{2}-1

\quad=-2

\Rightarrow \boxed{\sqrt{x}-\frac{1}{\sqrt{x}}=-2}

Similar questions