Math, asked by tanushree132, 1 year ago

if x=3+2root2, then find the value of x^4+1/x^4

Answers

Answered by arpit281
0
first you. have to find the value of x^4
that is (3+2√2)²*(3+2√2)²
by finding that you should put that value in equation
hence you will get your answer!!
Answered by DaIncredible
0
Hey dear,
Here is the answer you were looking for:
x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }   \\

On rationalizing the denominator we get,

 \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times   \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\

Using the identity:

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}

Putting the values :

 = (3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} ) \\  \\  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  \\  \\  = 6 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }

Squaring (x) + (1/x) = 6 we get,

 {(x +  \frac{1}{x} )}^{2}  =  {(6)}^{?}  \\  \\  {x}^{2}  +  { (\frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34 \\

Again squaring (x^2) + (1/x^2) = 34 we get,

 {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {(34)}^{2}  \\  \\  {( {x}^{2} )}^{2}  +  {( \frac{1}{ {x}^{2} }) }^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 1156 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 1156 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1156 - 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1154

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions