Physics, asked by TGtenthguru, 1 year ago



If x=(3++ 2t² + 2t + 7) m
and t = 5sec.
find velocity, acceleration at t = 0, t = 1 sec​

Answers

Answered by skh2
2

x=2t^2+2t+7+3\\ \\ \\x=2t^2+2t+10

\rule{200}{2}

we know that :-

VELOCITY=\dfrac{\triangle s}{\triangle t}\\ \\ \\ \\VELOCITY=\dfrac{dx}{dt}

\rule{200}{2}

Further we know :-

ACCELERATION=\dfrac{\triangle v}{\triangle t}\\ \\ \\ \\ACCELERATION=\dfrac{dv}{dt}

\rule{200}{2}

Now:-

Applying the derivative:-

VELOCITY=\dfrac{dx}{dt}\\ \\ \\VELOCITY=\dfrac{d}{dt}(2t^2+2t+10)\\ \\ \\V =\dfrac{d}{dt}(2t^2)+\dfrac{d}{dt}(2t)+\dfrac{d}{dt}(10)\\ \\ \\V=4t+2+0\\ \\ \\V=4t+2

\rule{100}{2}

Velocity at :-

t = 0 second:-

V=4t+2\\ \\ \\V=4(0)+2 = 2\:m/sec

t=1 second:-

V=4t+2\\ \\ \\V=4(1)+2\\ \\ \\V=6\:m/sec

\rule{200}{2}

ACCELERATION=\dfrac{dv}{dt}\\ \\ \\ACCELERATION=\dfrac{d}{dt}(4t+2)\\ \\ \\ACCELERATION=\dfrac{d}{dt}(4t)+\dfrac{d}{dt}(2)\\ \\ \\ACCELERATION=4+0 =4

Hence:-

Acceleration is independent of Time.

Thus ,

At t=0 and t=1; Acceleration is equal to 4 m/sec^2

Similar questions