If x = (√3-7)/(√3+7) and y = (3+2√2)/(3-2√2) then find the value of x+y
Answers
Answered by
3
x = (√3-7)/(√3+7)
→ (√3-7)/(√3+7)×(√3-7)/(√3-7)
→ (√3-7)²/(√3+7)(√3-7)
→ [√3²+7²-2(√3)(7)]/(√3²-7²)
→ (3+49-14√3)/(3-49)
→ (52-14√3)/(-46)
→ -(52-14√3)/46
→ -52/46 + 14√3/46
→ -26/23 + 7√3/23
→ (-26+7√3)/23
y = (3+2√2)/(3-2√2)
→ (3+2√2)/(3-2√2)×(3+2√2)/(3+2√2)
→ (3+2√2)(3+2√2)/(3-2√2)(3+2√2)
→ (3+2√2)²/(3²-(2√2)²)
→ [3²+(2√2)²+2(3)(2√2)]/(9-4(2))
→ (9+8+12√2)/(9-8)
→ 17+12√2
x+y = (-26+7√3)/23 + 17+12√2
= (-26+7√3)/23 + (17+12√2)×23/23
= [-26+7√3+161+276√2]/23
= [135 + 7√3 + 276√2]/23
Hope it helps
→ (√3-7)/(√3+7)×(√3-7)/(√3-7)
→ (√3-7)²/(√3+7)(√3-7)
→ [√3²+7²-2(√3)(7)]/(√3²-7²)
→ (3+49-14√3)/(3-49)
→ (52-14√3)/(-46)
→ -(52-14√3)/46
→ -52/46 + 14√3/46
→ -26/23 + 7√3/23
→ (-26+7√3)/23
y = (3+2√2)/(3-2√2)
→ (3+2√2)/(3-2√2)×(3+2√2)/(3+2√2)
→ (3+2√2)(3+2√2)/(3-2√2)(3+2√2)
→ (3+2√2)²/(3²-(2√2)²)
→ [3²+(2√2)²+2(3)(2√2)]/(9-4(2))
→ (9+8+12√2)/(9-8)
→ 17+12√2
x+y = (-26+7√3)/23 + 17+12√2
= (-26+7√3)/23 + (17+12√2)×23/23
= [-26+7√3+161+276√2]/23
= [135 + 7√3 + 276√2]/23
Hope it helps
Similar questions