Math, asked by 03aasthashukla8d, 12 hours ago

if x=3+√7 then find the value of x^2+1/x^2​

Answers

Answered by amansharma264
4

EXPLANATION.

⇒ x = 3 + √7.

As we know that,

We can write equation as,

⇒ 1/x = 1/(3 + √7).

Rationalizes the equation, we get.

⇒ 1/x = 1/(3 + √7) x (3 - √7)/(3 - √7).

⇒ 1/x = (3 - √7)/[(3 + √7)(3 - √7)].

⇒ 1/x = (3 - √7)/[(3)² - (√7)²].

⇒ 1/x = (3 - √7)/[9 - 7].

⇒ 1/x = (3 - √7)/2.

Now, we write equation as,

⇒ x + 1/x = (3 + √7) + (3 - √7)/2.

⇒ x + 1/x = [2(3 + √7) + (3 - √7)]/2.

⇒ x + 1/x = [6 + 2√7 + 3 - √7]/2.

⇒ x + 1/x = [9 + √7]/2.

Now, squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = [(9 + √7)/2]².

⇒ (x)² + (1/x)² + 2(x)(1/x) = [(81 + 7 + 18√7)/4].

⇒ x² + 1/x² + 2 = [88 + 18√7]/4.

⇒ x² + 1/x² = [(88 + 18√7)/4] - 2.

⇒ x² + 1/x² = [(88 + 18√7 - 8)/4].

⇒ x² + 1/x² = [(80 + 18√7)/4].

x² + 1/x² = [(40 + 9√7)/2].

Answered by jaswasri2006
4

⇒ x = 3 + √7

⇒ 1/x = 1/3 + √7

by rationalising,

⇒ 1/x = 1/ (3+√7) x (3-√7)/(3-√7)

⇒ 1/x = (3 - √7)/2

then, x + 1/x is

⇒ 3 + √7 + ( 3 - √7/2 )

⇒ (6 + 2√7 + 3 - √7)/2

⇒ (9 + √7)/2

then, Squaring on both sides

⇒ (x)² + (1/x)² + 2(x)(1/x) = (81 + 7 + 18√7) / 4

⇒ x² + 1/x² + 2 = (88 + 18√7)/4

⇒ x² + 1/x² = (80 + 18√7)/4

⇒ x² + 1/x² = 40 + (9√7/2)

Similar questions