Math, asked by priti200, 1 year ago

if x = 3 + √8. find the value of x^2 + 1/x^2

Answers

Answered by 1400473
1263

x = 3+ √8

x = (3+√8)(3-√8) / (3-√8)

x = (9 -8) / (3-√8)

x = 1/ (3 -√8)

Or we can write 1/x = (3-√8)

Put the value and find out

x² +(1/x²) = x² + (1/x)²

So x² + 1/ x² = (3 +√8)² + (3 -√8)²

= 9+6√8+8 + 9–6√8+8

34. Ans.


Answered by hukam0685
26

\bf {x}^{2}  +  \frac{1}{ {x}^{2} } = 34 \\

Given:

  • x = 3 +  \sqrt{8}  \\

To find:

  • Find the value of  {x}^{2}  +  \frac{1}{ {x}^{2} } .

Solution:

Formula/Concept to be used:

  • \bf ( {a  + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab \\
  • \bf (a + b)(a - b) =  {a}^{2}  -  {b}^{2} \\

  • Rationalization: It is used to free the denominator from any radical sign.
  • For that, multiply and divide the fraction with RF of denominators.
  • if denominator is \bf a +  \sqrt{b} then, RF factor is \bf a -  \sqrt{b}

Step 1:

Squaring the x.

 {x}^{2}  = (3 +  \sqrt{8})^{2} \\

or

 {x}^{2}  = 9 + 8 + 6 \sqrt{8}  \\

or

 {x}^{2}  = 17 + 6 \sqrt{4\times 2}  \\

or

 {x}^{2}  = 17 + 6\times2 \sqrt{ 2}  \\

or

\bf {x}^{2}  = 17 + 12 \sqrt{2}  \\

Step 2:

Put the values in the expression.

 {x}^{2}  +  \frac{1}{ {x}^{2} }  \\

or

17 + 12 \sqrt{2}  +  \frac{1}{17 + 12 \sqrt{2} }  \\

rationalize the denominator.

(17 + 12 \sqrt{2} ) +  \frac{1}{17 + 12 \sqrt{2} }  \times  \frac{17 - 12 \sqrt{2} }{17 - 12 \sqrt{2} }  \\

or

(17 + 12 \sqrt{2} ) +  \frac{17 - 12 \sqrt{2} }{ {(17)}^{2}   - ( {12 \sqrt{2} )}^{2} }    \\

or

(17 + 12 \sqrt{2} ) +  \frac{17 - 12 \sqrt{2} }{ 289  - 288}    \\

or

(17 + 12 \sqrt{2} ) +  \frac{17 - 12 \sqrt{2} }{1}   \\

or

   =  17 + 12 \sqrt{2}  + 17 - 12 \sqrt{2}   \\

or

  {x}^{2}  +  \frac{1}{ {x}^{2} } = 34 \\

Thus,

\bf {x}^{2}  +  \frac{1}{ {x}^{2} } = 34 \\

Learn more:

1) If x=√28+5√12 and y=√37+10√12, What I'd the value of (x-y/(x+y)

https://brainly.in/question/28576555

2) rationalize the denominator of 2/3√3

https://brainly.in/question/4368349

Similar questions