if x = ( 3+√8) find value of x^3+ 1/x^3
Answers
Answered by
0
Given that..
x=3+8–√…(1)x=3+8…(1)
⇒1x=3−8√(3)2−(8√)2⇒1x=3−8(3)2−(8)2
⇒1x=3−8–√….(2)⇒1x=3−8….(2)
Now adding (1) & (2) we get…
x+1x=(3+8–√)+(3−8–√)x+1x=(3+8)+(3−8)
⇒x+1x=6⇒x+1x=6
Now,
x2+1x2x2+1x2
=(x+1x)2–2.x1x=(x+1x)2–2.x1x
=62–2=62–2
=36–2=36–2
=34=34. (Ans).
x=3+8–√…(1)x=3+8…(1)
⇒1x=3−8√(3)2−(8√)2⇒1x=3−8(3)2−(8)2
⇒1x=3−8–√….(2)⇒1x=3−8….(2)
Now adding (1) & (2) we get…
x+1x=(3+8–√)+(3−8–√)x+1x=(3+8)+(3−8)
⇒x+1x=6⇒x+1x=6
Now,
x2+1x2x2+1x2
=(x+1x)2–2.x1x=(x+1x)2–2.x1x
=62–2=62–2
=36–2=36–2
=34=34. (Ans).
Answered by
1
this is the picture of your answer
Attachments:
Similar questions