Math, asked by nishachauhan1576, 10 months ago


If x= 3 + √8 find x4 + 1/ x4​

Attachments:

Answers

Answered by tahseen619
6

1154

Step-by-step explanation:

\blue{\text{\pink{Ni}\red{sa} you can solve this question easily.}}

If you follow some rules.

Given:

x = 3 + √8

To Find:

 {x}^{4} + \dfrac{1}{ {x}^{4} }

How to Solve:

1. Find the value of 1/x.

2. Than Find x + 1/x

3. Use Algebra Formula

4. Simplify and get answers.

Solution:

x = 3 +  \sqrt{8}  \\  \\  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\  \\  =  \frac{1}{3 +  \sqrt{8} }  \times  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} }  \:  \:  [\because(a+b)(a-b) =  {a}^{2} -  {b}^{2}] \\  \\  =  \frac{3 -  \sqrt{8} }{ {(3)}^{2}  -  {( \sqrt{8})}^{2}}  \\  \\  =  \frac{3 -  \sqrt{8} }{9 - 8}  \\  \\  =  \frac{3 - \sqrt{8}  }{1}   \\  \\  \therefore \:  \:  \frac{1}{x}  = 3 -  \sqrt{8}  \\  \\ \tt{Again}, \:\:\: x +  \frac{1}{x}  = (3 +  \sqrt{8})  + (3 -  \sqrt{8} ) \\  \\ \tt x +  \frac{1}{x}  = 6

Now,

 =  {x}^{4}  +  \frac{1}{ {x}^{4} } \:  \:  [\because {a}^{2} +  {b}^{2} = (a+b)^2 - 2ab]\\  \\  =  {( {x}^{2} +  \frac{1}{ {x}^{2} } ) }^{2} -2. {x}^{2} .\frac{1}{ {x}^{2} }  \\  \\  =  { \{  {(x +  \frac{1}{x} )}^{2}   -  2.x. \frac{1}{x} \}}^{2}   - 2 \\  \\  =  { \{  {(6)}^{2}  - 2\} }^{2}  - 2 \\  \\  =  {(36 - 2)}^{2}  - 2 \\  \\  = 34 {}^{2}  - 2 \\  \\  = 1156 - 2 \\  \\  = 1154

Therefore, Our required answer is 1154.

Answered by Arceus02
5

\sf{\underline{\underline{\large{\red{Question:-}}}}}

If x = 3 + √8, find x⁴ + 1/x⁴

\sf{\underline{\underline{\large{\red{Answer:-}}}}}

\mathtt{\blue{\underline{\bold{Finding\:1/x:-}}}}

x = 3 + √8

\bf{ \frac{1}{x}\:  = \: \frac{1}{3 +  \sqrt{8} } }

\bf{ \frac{1}{x }  =  \frac{1(3 -  \sqrt{8)} }{3 +  \sqrt{8}(3 -  \sqrt{8)}  } }

\bf{ \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{ {(3)}^{2} -  { (\sqrt{8} )}^{2}  }}

\bf{ \pink{\frac{1}{x} } =  \frac{3 -  \sqrt{8} }{9 - 8}  =\pink{ 3 -  \sqrt{8}} }

\mathtt{\blue{\underline{\bold{Finding\:x\:+\:\frac{1}{x}:-}}}}

\bf{\green{x\: + \:\frac{1}{x}}\: = \:3 \:+\: \sqrt{8}\: +\: 3\: -\: \sqrt{8}\: =\: \green{6}}

\mathtt{\blue{\underline{\bold{Finding\:{x}^{2}\:+\:\frac{1}{{x}^{2}}:-}}}}

\bf{{(\green{x + \frac{1}{x}})}^{2}\: = \:{x}^{2} \:+\: \frac{1}{{x}^{2}}\: + \:(2 * x * \frac{1}{x})}

\bf{{6}^{2}\: = \:{x}^{2} \:+\: \frac{1}{{x}^{2}}\: + \:2}

\bf{36\: = \:{x}^{2} \:+\: \frac{1}{{x}^{2}}\: + \:2}

\bf{\orange{34\: = \:{x}^{2} \:+\: \frac{1}{{x}^{2}}}}

\mathtt{\blue{\underline{\bold{Finding\:{x}^{4}\:+\:\frac{1}{{x}^{4}}:-}}}}

\bf{(\orange{{{x}^{2}+\frac{1}{{x}^{2}}}})^{2}\:=\:{x}^{4}\:+\:\frac{1}{{x}^4}\:+\:(2\:*\:{x}^{2}\:*\:\frac{1}{{x}^2})}

\bf{{34}^{2}\: = \:{x}^{4} \:+\: \frac{1}{{x}^{4}}\: + \:2}

\bf{1156\:-2\:={x}^{4}\:+\:\frac{1}{{x}^4}}

\bf{1154\:={x}^{4}\:+\:\frac{1}{{x}^4}}

{\underline{\boxed{\green{\bf{Ans.\:=\:1154}}}}}

Similar questions