Math, asked by ayushsharma5094, 1 year ago

if x=3+√8 then find the value of x^2+1/x^2

Answers

Answered by simmii1431
6
Hope it is useful for u !!

Thankyou☺
Attachments:

simmii1431: Hello bro!
simmii1431: Preparing for my exam bro
ayushsharma5094: Thanks dii...
simmii1431: Thankyou bro
Answered by Anonymous
6

\textbf{\underline{\underline{According\:to\:the\:Question}}}

x = (3 + √8)

\tt{\rightarrow\dfrac{1}{x}=\dfrac{1}{(3+\sqrt{8})}}

\tt{\rightarrow\dfrac{1}{(3+\sqrt{8})}\times\dfrac{(3-\sqrt{8})}{(3-\sqrt{8})}}

\tt{\rightarrow\dfrac{(3-\sqrt{8})}{3^2-(\sqrt{8}^{2})}}

\tt{\rightarrow\dfrac{(3-\sqrt{8})}{(9-8)}}

= (3 - √8)

★Now :-

\tt{\rightarrow x+\dfrac{1}{x}}

= (3 + √8) + (3 - √8)

= 6

\tt{\rightarrow (x+\dfrac{1}{x})^{2}}

= 6²

= 36

\tt{\rightarrow (x^{2}+\dfrac{1}{x})^{2}+2\times x\times\dfrac{1}{x}=36}

\tt{\rightarrow (x^{2}+\dfrac{1}{x})^{2}+2=36}

\tt{\rightarrow (x^{2}+\dfrac{1}{x})^{2}=36-2}

= 34

★Here we get :-

{\boxed{\sf\:{(x^{2}+\dfrac{1}{x})^{2}=36}}}

Similar questions