If (x+3)and(x+1/3) are factors of ax²+bx+5 then the value of 10a-3b+1 is equal to
Answers
Answer:
f(x) = x3 + ax2 – bx + 24
Let x + 3 = 0, then x = -3
Substituting the value of x in f(x)
f(–3) = (–3)3 + a(–3)2– b(–3) + 24,
= –27 + 9a + 3b + 24
= 9a + 3b – 3
∵ x + 3 is a factor,
∴ Remainder = 0,
∴ 9a + 3b – 3 = 0
⇒ 3a + b – 1 = 0 ...(Dividing by 3)
⇒ 3a + b = 1 ...(i)
Again Let x – 4 = 0,
then x = 4
Substituting the value of x in f(x)
f(x) = (4)2 + a(4)2 – b(4) + 24
= 64 + 16a – 4b + 24
= 16a – 4b + 88
∵ x – 4 is a factor
∴ Remainder = 0
16a – 4b + 88 = 0
⇒ 16a – 4b = – 88 ...(Dividing by 4)
⇒ 4a – b = –22 ...(ii)
Adding (i) and (ii)
7a = –21,
⇒ a = –3
Substituting the value of a in (i)
3(–3) + b = 1
⇒ –9 + b = 1
⇒ b = 1 + 9 = 10
∴ a = –3, b = 10
Now f(x) will be
f(x) = x3 – 3x2 – 10x + 24
∵ x + 3 and x – 4 are factors of f(x)
∴ Dividing f(x) by (x + 3)(x – 4)
or
x2 – x – 12
)
x3-x-12)x3-3x2-10x+24¯(x-2
x3 – x2 – 12x
– + +
–2x2 + 2x + 24
–2x2 + 2x + 24
+ – –
x
x3 – 3x2 – 10x + 24
= (x2 – x – 12)(x – 2)
= (x + 3)(x – 4)(x – 2).
Answer:
ꜰ(x) = x3 + ᴀx2 – ʙx + 24
ʟᴇᴛ x + 3 = 0, ᴛʜᴇɴ x = -3
ꜱᴜʙꜱᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏꜰ x ɪɴ ꜰ(x)
ꜰ(–3) = (–3)3 + ᴀ(–3)2– ʙ(–3) + 24,
= –27 + 9ᴀ + 3ʙ + 24
= 9ᴀ + 3ʙ – 3
∵ x + 3 ɪꜱ ᴀ ꜰᴀᴄᴛᴏʀ,
∴ ʀᴇᴍᴀɪɴᴅᴇʀ = 0,
∴ 9ᴀ + 3ʙ – 3 = 0
⇒ 3ᴀ + ʙ – 1 = 0 ...(ᴅɪᴠɪᴅɪɴɢ ʙʏ 3)
⇒ 3ᴀ + ʙ = 1 ...(ɪ)
ᴀɢᴀɪɴ ʟᴇᴛ x – 4 = 0,
ᴛʜᴇɴ x = 4
ꜱᴜʙꜱᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏꜰ x ɪɴ ꜰ(x)
ꜰ(x) = (4)2 + ᴀ(4)2 – ʙ(4) + 24
= 64 + 16ᴀ – 4ʙ + 24
= 16ᴀ – 4ʙ + 88
∵ x – 4 ɪꜱ ᴀ ꜰᴀᴄᴛᴏʀ
∴ ʀᴇᴍᴀɪɴᴅᴇʀ = 0
16ᴀ – 4ʙ + 88 = 0
⇒ 16ᴀ – 4ʙ = – 88 ...(ᴅɪᴠɪᴅɪɴɢ ʙʏ 4)
⇒ 4ᴀ – ʙ = –22 ...(ɪɪ)
ᴀᴅᴅɪɴɢ (ɪ) ᴀɴᴅ (ɪɪ)
7ᴀ = –21,
⇒ ᴀ = –3
ꜱᴜʙꜱᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏꜰ ᴀ ɪɴ (ɪ)
3(–3) + ʙ = 1
⇒ –9 + ʙ = 1
⇒ ʙ = 1 + 9 = 10
∴ ᴀ = –3, ʙ = 10
ɴᴏᴡ ꜰ(x) ᴡɪʟʟ ʙᴇ
ꜰ(x) = x3 – 3x2 – 10x + 24
∵ x + 3 ᴀɴᴅ x – 4 ᴀʀᴇ ꜰᴀᴄᴛᴏʀꜱ ᴏꜰ ꜰ(x)
∴ ᴅɪᴠɪᴅɪɴɢ ꜰ(x) ʙʏ (x + 3)(x – 4)
ᴏʀ
x2 – x – 12
)
x3-x-12)x3-3x2-10x+24¯(x-2
x3 – x2 – 12x
– + +
–2x2 + 2x + 24
–2x2 + 2x + 24
+ – –
x
x3 – 3x2 – 10x + 24
= (x2 – x – 12)(x – 2)
= (x + 3)(x – 4)(x – 2).