Math, asked by krishnachaitanya6062, 5 months ago

If x = -3 is a solution of the quadratic equation 3x2

+ 2kx – 3 = 0, find the value of k.​

Answers

Answered by aryan073
5

Given :

•The given quadratic equation is 3x²+2kx-3=0

•The value of x =-3

To Find :

• The value of k=?

Solution :

⇒The given quadratic equation is 3x²+2kx-3=0

⇒x=-3

According to the given conditions :

\\ \blue\bigstar\large\green{\underline{\sf{Substitute \: the \: value \: of \: x \: in \: equation }}}

 \ \\  \implies \sf \: 3 {x}^{2}  + 2kx - 3 = 0 \\  \\  \\  \implies \sf \: 3 {( - 3)}^{2}  + 2k( - 3) - 3 = 0 \\  \\  \\  \implies \sf \: 3 \times 9 - 6k - 3 = 0 \\  \\  \\  \implies \sf \: 27 - 6k - 3 = 0 \\  \\    \\  \implies \sf \: 27 - 3 - 6k = 0 \\  \\  \\  \implies \sf \: 24 - 6k = 0 \\  \\  \\ \implies \sf \: k =  \frac{24}{6}  \\  \\  \\  \implies \boxed{ \sf{k = 4}}

The value of k is 4

\\ \large\green{\underline{\sf{Additional \: information :}}}

•If the question ask to find the roots of the given quadratic equation we use formula method and determinant method.

\\ \star\pink{\underline{\sf{Formula \: method}}}

 \red \bigstar \boxed{ \sf{x =  \frac{ - b \pm   \sqrt{ {b}^{2}  - 4ac}  }{2a} }}

\\ \star\pink{\underline{\sf{Determinant \: method}}}

 \red \bigstar \boxed{ \sf{ \delta d =  {b}^{2}  - 4ac}}

Similar questions