Math, asked by OpalDemon, 9 months ago

if x=3 + root 3 find the value of x square +9/x square
Please need answer fast

Answers

Answered by abhishek65555
2

Step-by-step explanation:

This is the answer

Hope u like it

Attachments:
Answered by Qwparis
0

The correct answer is \frac{30+9\sqrt{3}}{2}.

Given: x = 3+\sqrt{3}.

To Find: The value of x^{2} +\frac{9}{x^{2} }.

Solution:

x = 3+\sqrt{3}

x^{2} =(3+\sqrt{3})^{2}

x^{2} =9+3+6\sqrt{3}

x^{2} =12+6\sqrt{3}

\frac{1}{x^{2} } =\frac{1}{12+6\sqrt{3} }

\frac{1}{x^{2} } =\frac{1}{12+6\sqrt{3} }*\frac{12-6\sqrt{3} }{12-6\sqrt{3} }

\frac{1}{x^{2} } =\frac{12-6\sqrt{3}}{12^{2} -(6\sqrt{3} )^{2} }

\frac{1}{x^{2} } =\frac{12-6\sqrt{3}}{144-108 }

\frac{1}{x^{2} } =\frac{12-6\sqrt{3}}{36 }

\frac{1}{x^{2} } =\frac{2-\sqrt{3}}{6 }

Put the value of x^{2} and \frac{1}{x^{2} } in the equation.

x^{2} +\frac{9}{x^{2} }

= 12+6\sqrt{3}+9(\frac{2-\sqrt{3} }{6} )

= 12+6\sqrt{3}+3(\frac{2-\sqrt{3} }{2} )

= 12+6\sqrt{3}+\frac{6-3\sqrt{3} }{2}

= \frac{24+12\sqrt{3}+ 6-3\sqrt{3} }{2}

= \frac{30+9\sqrt{3}}{2}

Hence, the answer is \frac{30+9\sqrt{3}}{2}.

#SPJ2

Similar questions