Math, asked by nithin5948, 7 months ago

if x=3+root8 find the value of x+1/x and xsquare+1/xsquare​

Answers

Answered by adityasandhwar
1

Answer:

6 and 34

Step-by-step explanation:

for this we have to use RF

x=3+2root2

1/x=1/(3+2root2). ×. (3-2root2)/(3-2root2)= (3-2root2)/(9-8)

=3-2root2

so,

x+1/x= 6

Now,

(x+1/x)^2=36

x^2+1/x^2+2x.1/x= 36

x^2+1/x^2=36-2=34

(.) represents multiplication

Answered by Anonymous
3

Answer:

x +  \frac{1}{x}  =  > 6 \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 34

Step-by-step explanation:

x = 3 +  \sqrt{8}  =  >  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }   \\ Since, the \:  denominator \\ =3+ \sqrt{8}   ,  \\ \: it's \:  rationalizing \:  factor  \\ =3- \sqrt{8}   \:  \\  Therefore, \:  \frac{1}{3 +  \sqrt{8} }  \times  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} }   \\ =  \frac{3 -  \sqrt{8} }{(3) {}^{2}  - ( \sqrt{8}) {}^{2}  }  =  \frac{3 -  \sqrt{8} }{9 - 8} \\   =  > 3 -  \sqrt{8}

x +  \frac{1}{x}  = 3 +  \sqrt{8}  + 3 -  \sqrt{8}  = >  6

 =  > (x +  \frac{1}{x} ) {}^{2}  = (6) {}^{2}  = 36 \\ Since, \: (x  +  \frac{1}{x} ) {}^{2} \\  = x {}^{2}  +  \frac{1}{x {}^{2} } + 2 \times x \times  \frac{1}{x}   \\  =  > x {}^{2} +  \frac{1}{x {}^{2} }    + 2 = 36 \\ \: \: that \:  is, \: x {}^{2}  +  \frac{1}{x {}^{2} }  = 36 - 2 \\  =  > 34

Similar questions