if x = 3 + root8 , find the value of [ x 2 + 1/x 2 ] ?
Answers
Answered by
9
x=3+√8
=> 1/x=1/3+√8 × 3-√8/3-√8 = 3-√8/(3)^2-(√8)^2
=3-√8/9-8 = 3-√8/1 = 3-√8
Now, (x^2 + 1/x^2) = [(3+√8)^2 + (3-√8)^2]
=[(9+8+6√8) + (9+8-6√8)]
=(17+6√8 + 17-6√8)
=34
=> 1/x=1/3+√8 × 3-√8/3-√8 = 3-√8/(3)^2-(√8)^2
=3-√8/9-8 = 3-√8/1 = 3-√8
Now, (x^2 + 1/x^2) = [(3+√8)^2 + (3-√8)^2]
=[(9+8+6√8) + (9+8-6√8)]
=(17+6√8 + 17-6√8)
=34
Answered by
6
Answer:
34
Step-by-step explanation:
Given, x=3+root 8
x=3+√8
= 1/x=1/3+√8 × 3-√8/3-√8 = 3-√8/(3)^2-(√8)^2
=3-√8/9-8 = 3-√8/1 = 3-√8
=(x^2 + 1/x^2) = [(3+√8)^2 + (3-√8)^2]
=[(9+8+6√8) + (9+8-6√8)]
=(17+6√8 + 17-6√8)
=34
Hope It Helps!!!
Mark it as brainliest!!
Similar questions