Math, asked by adi1100, 1 year ago

if x = 3 sec squared theta minus 1, Y equal 10 squared theta minus 2 then find the value of x - 3y

Answers

Answered by pinquancaro
30

Answer:

The value of expression is x-3y=8      

Step-by-step explanation:

Given : x=3\sec^2\theta-1 and y=\tan^2\theta-2

To find : The value of x-3y

Solution :

Write the expression  x-3y

Substitute, the values of x and y given

i.e. x-3y =3\sec^2\theta-1-3(\tan^2\theta-2)

Solving,

x-3y =3\sec^2\theta-1-3\tan^2\theta+6

x-3y=3(sec^2\theta-\tan^2\theta)+5

Applying trigonometric identity,

sec^2\theta-\tan^2\theta=1

We get,

x-3y=3(sec^2\theta-\tan^2\theta)+5

x-3y=3(1)+5

x-3y=8

Therefore, The value of expression is x-3y=8

Answered by mysticd
22

Answer:

 Value \:of \:x-3y = 8

Step-by-step explanation:

 Given\:x=3sec^{2}\theta -1\:---(1)\\y=tan^{2}\theta-2\:---(2)

 Value \:of \: x-3y\\=(3sec^{2}\theta-1) -3(tan^{2}\theta-2)\\=3sec^{2}\theta-1 -3tan^{2}\theta+6\\=3sec^{2}\theta -3tan^{2}\theta+5\\=3(sec^{2}\theta-tan^{2}\theta)+5\\=3\times 1+5

/* By Trigonometric identity:

Sec²A-tan²A=1 */

=3+5\\=8

Therefore,

 Value \:of \:x-3y = 8

•••♪

Similar questions