If x = 300 , then verify that sin 3 x = 3 sin x – 4 sin3 x
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given,
x = 300°
To Verify :-
Solution :-
Finding value of L.H.S :-
= sin3x
= sin3(300°)
= sin900°
= sin(810° + 90°)
= cos(90°)
= 0
∴ sin3x = 0
Finding value of R.H.S :-
= 3sinx - 4sin³x
= 3sin300° - 4(sin300°)³
= 3sin(360° - 60°) - 4[sin(360° - 60°)]³
= 3(-sin60°) -4(-sin60°)³
= 3(-√3/2) - 4[(-√3/2)³]
= -3√3/2 -4(-3√3/8)
= -3√3/2 + 12√3/8
= -12√3/8 + 12√3/8
= -12√3 + 12√3/8
= 0/8
= 0
∴ 3sinx - 4sin³x = 0
∴ sin3x = 3sinx - 4sin³x
0 = 0
Hence Verified.
Similar questions