Math, asked by pahwagurvir, 9 months ago

If x=3x+2 √2 find the value of x^2+1/x^2
Please give detailed solutions

Answers

Answered by MOSFET01
7

Solution

Given

 x\: =\: 3\: +\: 2\sqrt{2}

To Find

 x^{2}\:+\:\dfrac{1}{x^{2}}

Steps to follow

\dfrac{1}{x}\: = \: \dfrac{1}{3\: + \: 2\sqrt{2}}

\dfrac{1}{x}\: = \: \dfrac{1}{3\: + \: 2\sqrt{2}}\times\dfrac{3\: - \: 2\sqrt{2}}{3\: - \: 2\sqrt{2}}

\dfrac{1}{x} \: = \: \dfrac{3\: - 2\sqrt{2}}{3^{2} \: - \: (2\sqrt{2})^{2}}

\dfrac{1}{x}\: = \: \dfrac{3\: - 2\sqrt{2}}{9\: - \: 4\times 2}

\dfrac{1}{x}\: = \: \dfrac{3\: - 2\sqrt{2}}{9\: - \: 8}

\dfrac{1}{x}\: = \: \dfrac{3\: - 2\sqrt{2}}{1}

\dfrac{1}{x}\: = \: 3\: - 2\sqrt{2}

 x^{2}\:+\:(\dfrac{1}{x})^{2}

\implies (3\: + \: 2\sqrt{2})^{2} \: + \: (3\: - \: 2\sqrt{2})^{2}

\implies 9 \: + \: 8 \: + \: 12\sqrt{2} \: + \: 9 \: + \: 8 \: - \: 12\sqrt{2}

eliminate 12√2

\implies 9 \: + \: 8 \: + \:+ \: 9 \: + \: 8

\implies 18 \: + \: 16

\implies 34

\boxed{x^{2}\:+\:\dfrac{1}{x^{2}}\: =\: 34}

Answered by Swarup1998
7

Given: x=3+2\sqrt{2}

To find: x^{2}+\frac{1}{x^{2}}

Solution 1.

Here, x=3+2\sqrt{2}

Then, \frac{1}{x}=\frac{1}{3+2\sqrt{2}}

\quad\quad=\frac{3-2\sqrt{2}}{(3+2\sqrt{2})(3-2\sqrt{2})}

\quad\quad=\frac{3-2\sqrt{2}}{9-8}

\quad\quad=\frac{3-2\sqrt{2}}{1}

\quad\quad=3-2\sqrt{2}

Thus, x^{2}+\frac{1}{x^{2}}

\quad=(3+2\sqrt{2})^{2}+(3-2\sqrt{2})^{2}

\quad=9+12\sqrt{2}+8+9-12\sqrt{2}+8

\quad=34

\Rightarrow \boxed{\color{blue}x^{2}+\frac{1}{x^{2}}=34}

Solution 2.

Now, x^{2}+\frac{1}{x^{2}}

\quad=\left(x+\frac{1}{x}\right)^{2}-2*x*\frac{1}{x}

\quad=(3+2\sqrt{2}+3-2\sqrt{2})^{2}-2

\quad=6^{2}-2

\quad=36-2

\quad=34

\Rightarrow \boxed{\color{blue}x^{2}+\frac{1}{x^{2}}=34}

Similar questions