Math, asked by parastondwalkar4626, 11 months ago

If x/3x-y-z=y/3y-z-x=z/3z-x-y and x+y+z≠0 then show that the value of each ratio is equal to 1.

Answers

Answered by MaheswariS
83

Answer:

\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=1

Step-by-step explanation:

If x/3x-y-z=y/3y-z-x=z/3z-x-y and x+y+z≠0 then show that the value of each ratio is equal to 1

Concept used:

\boxed{\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\:\implies\:\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}}

\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{3x-y-z+3y-z-x+3z-x-y}

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{3x+3y+3z-2x-2y-2z}

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{3(x+y+z)-2(x+y+z)}

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{x+y+z}

\implies\:\boxed{\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=1}

Hence proved

Answered by ItzAshleshaMane
29

Answer:

this is your answer.

Hope it will help you.

Attachments:
Similar questions