Math, asked by ssrndl22, 9 months ago

If x + 3y = 16 is the perpendicular bisector of AB and A(5, 7), then B =​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\text{x+3y-16=0 is the perpendicular bisector of AB and A(5,7)}

\textbf{To find:}\;\;B

\text{Since AB is perpendicular to x+3y-16=0,}

\text{the equation of AB can be written as 3x-y+k=0}

\text{It passes through (5,7)}

\implies\,3(5)-7+k=0

\implies\,8+k=0

\implies\,k=-8

\textbf{The equation of AB is 3x-y-8=0}

\text{Now,}

\text{The midpoint of AB is the point of intersection of the lines x+3y-16=0 and 3x-y-8=0}

x+3y-16=0

9x-3y-24=0

\text{Adding,}\;10x-40=0

\implies\,x=4

\text{and y=4}

\text{Let the coordinates of B be (h,k)}

\text{Clearly (4,4) is the midpoint of AB}

(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})=(4,4)

(\frac{5+h}{2},\frac{7+k}{2})=(4,4)

\frac{5+h}{2}=4\;\text{and}\;\frac{7+k}{2}=4

5+h=8\;\text{and}\;7+k=8

h=3\;\text{and}\;k=1

\therefore\textbf{The coordinates of B is (3,1)}

Find more:

1.Find the coordinates of the foot of perpendicular drawn from the point(-2,3) on the line 3x-2y+5=0

https://brainly.in/question/11747216

2.Find the coordinates of the foot of the perpendicular drawn from the point (1 -2) to the line y=2x+1

https://brainly.in/question/6182343

Answered by sanjeevk28012
0

Given :

The equation of line x + 3 y = 16

The line is perpendicular to line AB

The co-ordinate of point A = 5 , 7

To Find :

The co-ordinate of point B

Solution :

Let The  co-ordinate of point B = x_1 , y_1

The line x + 3 y = 16 is perpendicular to line AB

The mid point of perpendicular of line AB= \dfrac{5+x_1}{2} ,  \dfrac{7+y_1}{2}

As line x + 3 y = 16 is meet at point \dfrac{5+x_1}{2} ,  \dfrac{7+y_1}{2}

So, Equation of line written as

  \dfrac{5+x_1}{2} + 3 ( \dfrac{7+y_1}{2} ) = 16

Or, 5 + x_1 + 21 + 3 y_1 = 32

Or,  x_1 + 3 y_1 = 6                      .............1

Again

The slope of line x_1 + 3 y_1 = 6

i.e        3 y_1 = 6 - x_1

Or,          y = - \dfrac{x_1}{3} + \dfrac{6}{3}

         m_1 = \dfrac{-1}{3}

Again

Slope of line AB

   m_2 = \dfrac{y_1-7}{x_1-5}

When slopes are perpendicular , product of slope = - 1

∴  m_1 m_2 = -1

Or, ( \dfrac{-1}{3} ) × ( \dfrac{y_1-7}{x_1-5} ) = - 1

Or,   - 1 ( y_1 - 7 ) = - 1 ( 3x_1 - 15 )

Or,     y_1 - 7 = 3x_1 - 15

i.e     y_1 =  3x_1 - 8                    ............2

Solving eq 1and eq 2

x_1 + 3 ( 3x_1 - 8 ) = 6  

Or,  x_1 + 9x_1 - 24 = 6  

Or,  10 x_1  = 24 + 6

Or,      x_1  = \dfrac{30}{10}

i.e     x_1  = 3

Put the value of x_1  in eq 2  , we get

 y_1 =  3 × 3 - 8    

     = 9 - 8

     = 1

i.e  Point  x_1 , y_1 = 3 , 1

So, The co-ordinate of point B = ( x_1 , y_1 ) = 3 , 1

Hence,  The co-ordinate of point B is 3 , 1     Answer

Similar questions