Math, asked by mahipatil2006, 9 months ago

if x^4+1/x^4=47
#then x^3+1/x^3=,?​

Answers

Answered by rajeevr06
2

Answer:

 {x}^{4}  +  \frac{1}{ {x}^{4} }  = 47

( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  - 2 {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 47

( {x}^{2}  +  \frac{1}{ {x}^{2} } ) =  \sqrt{47 + 2}  =  \sqrt{49}  = 7

(x +  \frac{1}{x} ) {}^{2}  - 2x \times  \frac{1}{x}  = 7

x +  \frac{1}{x}  =  \sqrt{7 + 2}  =  \sqrt{9}  = 3

now,

 {x}^{3}  +  \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x} ) {}^{3}  - 3x \frac{1}{x} (x +  \frac{1}{x} ) =  {3}^{3}  - 3 \times 3 = 27 - 9 = 18 \:  \: ans.

Similar questions