Math, asked by Navjot111111, 1 year ago

if x=4+2√3 then find the value of √x+1/√x

Answers

Answered by Robin0071
0
Solution:-

given 》 x=4+2√3


 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \\   \sqrt{4 + 2 \sqrt{3} }  +  \frac{1}{ \sqrt{4 + 2 \sqrt{3} } }  \\  \frac{4 + 2 \sqrt{3}  + 1}{ \sqrt{4 + 2 \sqrt{3} } } ans
Answered by Dhruv4886
0

The value of √x + (1/√x) = (3√3+1)/2

\sqrt{x} +\frac{1}{\sqrt{x} } =  \frac{3\sqrt{3}+1 }{2}  

Given:

x = 4+2√3

To find:

The value of  \sqrt{x} + \frac{1}{\sqrt{x} }  

Solution:

Given that  x = 4+2√3  

x = 1 + 3 + 2√3       [ split 4 as 3 + 1 ]

x = (1)²+ (√3)² + (1)(2) (√3)

x = [ 1 + √3]²                            [ from (a+b)² = a²+ b²+2ab ]

√x = (1+√3) ___ (1)  

From (1)

\frac{1}{\sqrt{x} } = \frac{1}{1 + \sqrt{3} }        

To rationalize \frac{1}{1 + \sqrt{3} }  divide and multiply with (1 - √3)  

\frac{1}{\sqrt{x} } = \frac{1}{1 + \sqrt{3} }(\frac{1-\sqrt{3} }{1-\sqrt{3} } )        

\frac{1}{\sqrt{x} } = \frac{1-\sqrt{3} }{(1)^{2} -(\sqrt{3})^{2}  }              [ from (a+b)(a-b) = (a²-b²) ]

\frac{1}{\sqrt{x} } = \frac{1-\sqrt{3} }{1 -3 }= \frac{1-\sqrt{3}  }{-2}  

\frac{1}{ \sqrt{x} } = \frac{1 - \sqrt{3} }{-2}  ___ (2)

From (1) and (2)

\sqrt{x} +\frac{1}{\sqrt{x} } = 1 +\sqrt{3} + \frac{1-\sqrt{3} }{-2}

=  \frac{-2(1+\sqrt{3} ) +1-\sqrt{3} }{-2}

=  \frac{-2- 2\sqrt{3} +1-\sqrt{3} }{-2}

=  \frac{-1- 3\sqrt{3} }{-2}

=  \frac{1+ 3\sqrt{3} }{2}  

\sqrt{x} +\frac{1}{\sqrt{x} } =  \frac{3\sqrt{3}+1 }{2}  

The value of √x + (1/√x) = (3√3+1)/2

#SPJ2

     

Similar questions