if x = 4+√2, find x+1/x
Answers
Answered by
2
EXPLANATION.
⇒ x = 4 + √2.
As we know that,
We can write equation as,
⇒ 1/x = 1/(4 + √2).
Rationalizes the denominator, we get.
⇒ 1/x = 1/(4 + √2) x (4 - √2)/(4 - √2).
⇒ 1/x = (4 - √2)/[(4 + √2)(4 - √2)].
⇒ 1/x = (4 - √2)/[(4)² - (√2)²].
⇒ 1/x = (4 - √2)/[16 - 2].
⇒ 1/x = (4 - √2)/(14).
To find : (x + 1/x).
⇒ x + 1/x = (4 + √2) + [(4 - √2)/14].
⇒ x + 1/x = [14(4 + √2) + (4 - √2)/(14)].
⇒ x + 1/x = [56 + 14√2 + 4 - √2]/(14).
⇒ x + 1/x = [(60 + 13√2)/14].
Answered by
3
Explanation :
For Further Explanation, refer the given attachment
Attachments:
Similar questions