Math, asked by karenkora1243, 10 hours ago

if x = 4+√2, find x+1/x​

Answers

Answered by amansharma264
2

EXPLANATION.

⇒ x = 4 + √2.

As we know that,

We can write equation as,

⇒ 1/x = 1/(4 + √2).

Rationalizes the denominator, we get.

⇒ 1/x = 1/(4 + √2) x (4 - √2)/(4 - √2).

⇒ 1/x = (4 - √2)/[(4 + √2)(4 - √2)].

⇒ 1/x = (4 - √2)/[(4)² - (√2)²].

⇒ 1/x = (4 - √2)/[16 - 2].

⇒ 1/x = (4 - √2)/(14).

To find : (x + 1/x).

⇒ x + 1/x = (4 + √2) + [(4 - √2)/14].

⇒ x + 1/x = [14(4 + √2) + (4 - √2)/(14)].

⇒ x + 1/x = [56 + 14√2 + 4 - √2]/(14).

x + 1/x = [(60 + 13√2)/14].

Answered by jaswasri2006
3

 \mathfrak{ the  \:  \:  \: value \: \:   \: of  \:  \: \boxed{  \pink{\sf x +  \frac{1}{x} } }\:  \:  \: is \:  \: }

 \\

 \boxed{ \large \sf  \orange  {\:  \frac{60 - 13 \sqrt{2} }{14} }}

 \\  \\

Explanation :

 \\

For Further Explanation, refer the given attachment

Attachments:
Similar questions