Math, asked by amitaakre, 3 months ago

if x=4-√5 then find the value of (x+1/x)²​

Answers

Answered by Anonymous
12

Given :-

x = 4 -  \sqrt{5}

To find :-

(x +  \dfrac{1}{x} ) {}^{2}

Solution :-

First we shall find value of 1/x

 \dfrac{1}{x}  =  \dfrac{1}{4 -  \sqrt{5} }

Rationalizing the denominator So, multiply with its conjugate of the denominator

Since Rationalizing factor for ,

4 -  \sqrt{5}  \:  \: is \:  \: 4 +  \sqrt{5}

 \dfrac{1}{x}  =  \dfrac{1}{4 -  \sqrt{5} }  \times  \dfrac{4 +  \sqrt{5} }{4 +  \sqrt{5} }

 \dfrac{1}{x}  =  \dfrac{4 +  \sqrt{5} }{(4) {}^{2}  - ( \sqrt{5}) {}^{2}  }

 \dfrac{1}{x}  =  \dfrac{4 +  \sqrt{5} }{16 - 5}

 \dfrac{1}{x}  =  \dfrac{4 +  \sqrt{5} }{11}

Now, finding value of x + 1/x

x +  \dfrac{1}{x}  = 4 -  \sqrt{5}  + \dfrac{4 +  \sqrt{5} }{11}

x +  \dfrac{1}{x}  = 44 - 11 \sqrt{5}  + 4 +  \sqrt{5}  \div 11

x +  \dfrac{1}{x}  = 48 - 10 \sqrt{5}  \div 11

(x +  \dfrac{1}{x} ) {}^{2}  = ( \dfrac{48 - 10 \sqrt{5} }{11} ) {}^{2}

(x +  \dfrac{1}{x} ) {}^{2}  = \dfrac{2304 + 500 -960 \sqrt{5}  }{121}

(x +  \dfrac{1}{x} ) {}^{2}  =  \dfrac{2804 - 960 \sqrt{5} }{121}

Know more some algebraic identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Answered by mathdude500
12

Basic Concept Used :-

1. Method of Rationalization :-

This method is used to remove the radicals from denominator and it means multiply and divide the given expression by conjugate of denominator.

\begin{gathered}2. \:  \: \:{\underline{\boxed{\bf{\blue{{\bf \:  {(x + y)}(x - y)  = {x}^{2} -  {y}^{2}\: }}}}}} \\ \end{gathered}

Given :-

\rm :\longmapsto\:x = 4 -  \sqrt{5}

To Find :-

\rm :\longmapsto\:\bigg(x + \dfrac{1}{x}\bigg)^{2}

Solution :-

Given that

\rm :\longmapsto\:x = 4 -  \sqrt{5}

So,

\rm :\longmapsto\:\dfrac{1}{x}

 \rm \:  =  \: \dfrac{1}{4 -  \sqrt{5} }

 \rm \:  =  \: \dfrac{1}{4 -  \sqrt{5} } \times \dfrac{4 +  \sqrt{5} }{4 +  \sqrt{5} }

 \rm \:  =  \: \dfrac{4 +  \sqrt{5} }{ {4}^{2}  -   {( \sqrt{5})}^{2}  }

 \rm \:  =  \: \dfrac{4 +  \sqrt{5} }{16  - 5}

 \rm \:  =  \: \dfrac{4 +  \sqrt{5} }{11}

\bf\implies \:\dfrac{1}{x}  \:  = \dfrac{4 +  \sqrt{5} }{11}

Now,

Consider,

\rm :\longmapsto\:\bigg(x + \dfrac{1}{x}\bigg)^{2}

 \rm \:  =   \bigg(\: 4 -  \sqrt{5}  + \dfrac{4 +  \sqrt{5} }{11} \bigg)^{2}

 \rm \:  =    \bigg(\dfrac{44  - 11\sqrt{5} +  4 +  \sqrt{5} }{11} \bigg)^{2}

 \rm \:  =  \bigg(\dfrac{48  - 10  \sqrt{5}}{11 }\bigg)^{2}

 \rm \:  =  \: \dfrac{2304 + 500 - 960 \sqrt{5} }{121}

 \rm \:  =  \: \dfrac{2804 - 960 \sqrt{5} }{121}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions