Math, asked by coolmanas750manas, 1 year ago

if x = 4+root 15, y = 4-root 15, find x^3 + y^3

Answers

Answered by TheMahi
1
x
 {x}^{3}  + y {3} = (x + y)(x ^{2}  +  {y}^{2}  - x \times y) \\  = (4 +  \sqrt{15 }  + 4 -  \sqrt{15} )((4 +  \sqrt{15} )^{2}  + (4 -  \sqrt{15} ) ^{2}  - (4 +  \sqrt{15}) (4 -  \sqrt{15} )) \\  = (8)(16 + 15 + 8 \sqrt{15}  + 16 + 15 - 8 \sqrt{15}  - (4 ^{2}  - ( \sqrt{15})^{2} ) \\  = (8)(31 + 31 - 1) \\  =(8)(61) \\  = 488

coolmanas750manas: thank you
Answered by Abhinavmsiva
0
Use the identity.

X³+Y³ = (X+Y)(X²+XY+Y²)

= (4+√15+4-√15)( (4+√15)²+(4+√15)(4-√15)+ (4-√15)²

= 8(16+15+16+15+16-15)
= 8*61 = 488
Similar questions